
Architecture/UI

Roman Chyla & the ADS Team

ADS Users Group Meeting - 11/2/207



Recall when we were young….

(9 months ago in a far far away galaxy)

2 major problems:
● How to scale up to 3000 reqs/s

○ (and don’t break the NASA budget)
● Accomplish data-parity with Classic

○ (which turned into: re-engineer the bl...y thing)



Seems like we are in for another Happy-End...

Oh no! Not that again!



Scaling up (1.)

A story of how the ‘yesterday’s good’ became ‘today’s bad’

● 20 Amazon virtual machines
● 40-60 reqs/s
● Reaction time: minutes

● Kubernetes (on Amazon)
● Thousands reqs/s
● Reaction time: seconds



Scaling up (2.)

1. Write a very detailed script
○ Specifications 3000 reqs/s
○ Test technologies
○ Discover Kubernetes

2. Hire a dedicated devops engineer
3. Rest



Scaling up (3.) - unexpected gift

● When 3 pairs of eyes are not enough
○ You need glasses

● Removing shortcomings from internal api gateway
○ External libraries

● Discover the real bottleneck
○ And hopefully fix it

■ ...and discover another one, yay!



Data parity - a.k.a. backoffice pipeline

● Why a new one?
○ The old was ugly
○ It was slow
○ Did I say it was ugly?

● Re-engineered
○ Still based on brokering/messaging (Celery)
○ Standardized messages (Google Protocol Buffers)
○ Standardized libraries (ADSPipelineUtils)
○ Centralized (one master pipeline to rule ‘em all)
○ Modular (we now have 5 pipelines and new ones are coming)



Current pipeline status

● In testing 
○ Very complex undertaking
○ “Almost production-ready” for the past 3 weeks (fix, re-run, repeat)

● Fast and getting faster
○ 48 hours (the old) vs 12 hours (the new) ← and that’s full re-ingest
○ Will get better still…

● More robust
○ Better logging, control

● Will exist when ADS Classic is no more

… and why is speed so important?



Bumblebee UI/UX Focus

● Error Handling
○ Improve way site reacts to slowdowns and server-related issues
○ Improve how/when users are made aware of errors
○ Improve messages, identifiers, and other visual cues

● ORCiD
○ Updated to 2.0 API
○ Faster, more error-resistant

● Under-the-Hood
○ Transition to newer framework -> Faster, more responsive experience
○ Cleanup and slimming down -> Better maintainability



Kicked the can further down the road...

(still paying the technical debt)

● SOLR
● Microservices architecture

● And where’s R&D?


