
Keeping ADS relevant

Problem Statement

type frequency difficulty

person 80% 10%

copy&paste 10% 10%

topic 10% 80%

3 pillars of the search

● How relevant (Results Ranking)
● How knowledgeable (about THE User)
● How fast (Search Speed and Capacity)

Good enough will have to suffice

●I.+II.
● Search Relevancy
● Knowing the user

Relevance plan

● Port Classic ranking
● Get infrastructure for intelligent learning

− Collecting data (about users, queries, results)
− Evaluating/measuring impact of used variables

● Update, rinse, repeat

Baseline Relevance

● Classic ranking
● ½ of score contributed by the match between the query

and the paper
● ½ of score contributed by quality of the paper

− log(1 + #citations + normalized_reads)
− Works well for metadata queries
− Implementation

● Slightly different scoring model (custom component)
− Normalization is applied to the final score
− Not to the matching query components

● It can be done (actually, we have had this functionality for
a long time), but need precision for two questions
− What’s the impact on search/load?
− Can we avoid making customizations to SOLR?

Example query: LSST

● (((abstract:acr::lsst
abstract:syn::acr::lsst
abstract:syn::large synoptic survey
telescope))^1.3

● ((author:lsst, author:lsst,*))^2.0
● ((title:acr::lsst title:syn::acr::lsst title:syn::large

synoptic survey telescope))^1.5

Amusing (at least to me) query

THE → ((abstract:acr::the)^1.3 | ((author:the, author:thè,
author:thé, author:thé,;thè, author:the,* author:thè,* author:thè,
author:thè,* author:thé,* author:thee, author:thee,* author:thé,;thè, *
author:thé, ; author:thé, ; * author:thee,;thè, author:thee,;thè, *
author:thee, ; author:thee, ; * author:the,;the, author:the,;the, *
author:the, ; author:the, ; *))^2.0 | bibstem:the | ((first_author:the,
first_author:thè, first_author:thé, first_author:thé,;thè, first_author:the,*
first_author:thè,* first_author:thè, first_author:thè,* first_author:thé,*
first_author:thee, first_author:thee,* first_author:thé,;thè, *
first_author:thé, ; first_author:thé, ; * first_author:thee,;thè,
first_author:thee,;thè, * first_author:thee, ; first_author:thee, ; *
first_author:the,;the, first_author:the,;the, * first_author:the, ;
first_author:the, ; *))^5.0 | identifier:the | (title:acr::the)^1.5 |
(year:the)^2.0)",

Baseline Relevance

● For fulltext search
− Either a combination of constant scores (sort of

mimicking Classic behaviour)
− Or combination of damping boost factors across

fields (when searching across indexes), i.e.
unfielded search

● first_author^15
● author^10
● title^8 …..

● Multitude of search features already in place
− Boosting, unfielded search, synonyms…
− Too many to list (over hundred, but that’s OK, they

are all well tested)

Learning to Rank

● Search features
− Query specific
− Document specific
− User specific

● Most promising features are “external” to the
document/query

● But impact of each individual feature is difficult
to measure
− Need to collect data
− Turn data into signals

Learning to Rank

● Simulateur (adsabs.harvard.edu/scorer)
− Platform for simulating query response
− Grid search for optimal set of parameters
− Types of data

● Expert judgment
● Classic results
● User clicks

Collecting signals

● We are going to collect more data
− About users
− About their actions

● Yet the data must be easily accessible
− Temporal (time series database)

● Actionable
− Eventually we’ll plug this data into the search

algorithm (online)

●III.
● Search Speed

Search Speed

● Index size decreased by 40%
● Put in place detailed performance

measurements
− But we are not yet using them on a regular basis

● Optimized citation cache creation
− Caused big problems in production
− New code ready for deployment/testing

Speed

● Some work still remains to be done
− Ascertain how many nodes/machines we need to

run
− What budget
− Effective scaling up/down

● In the end we’ll have to do what is needed
− To make user experience fast
− Even if that might be ugly (separate small/big

instances, etc.)

Search Capacity

● Current model
− Slave/master

● Good enough for now
● If index continues to grow lineary

− Distributed (cloud mode)
● Necessary if ADS were to index more
● Second order operations are however a big problem

− How to do the computation in a distributed fashion

Final notes

● The goals are big
− We are deliberately aiming high (or one might add:

setting ourselves for a failure)
− But if half is accomplished, the ADS will be in a very

good shape for the future
● Competitive against any similar project
● But the goal is to be the best, n’est pas?

