Keeping ADS relevant



Problem Statement

type frequency difficulty
person 80% 10%
copy&paste 10% 10%

topic 10% 80%



3 pillars of the search

. How relevant (Results Ranking)
. How knowledgeable (about THE User)
. How fast (Search Speed and Capacity)




Il have to suffice

Good enough w




A+

. Search Relevancy
. Knowing the user



Relevance plan

. Port Classic ranking

. Get infrastructure for intelligent learning
- Collecting data (about users, queries, results)
- Evaluating/measuring impact of used variables

. Update, rinse, repeat



Baseline Relevance

. Classic ranking

. Y2 of score contributed by the match between the query
and the paper
. Y2 of score contributed by quality of the paper
- log(1 + #citations + normalized_reads)

- Works well for metadata queries

- Implementation

. Slightly different scoring model (custom component)
- Normalization is applied to the final score
- Not to the matching query components
. It can be done (actually, we have had this functionality for

a long time), but need precision for two questions
- What's the impact on search/load?
- Can we avoid making customizations to SOLR?



Example query: LSST

e (((abstract.acr::lsst
abstract:syn::acr::lsst
abstract:syn::large synoptic survey
telescope))*1.3

e ((author:lsst, author:lsst,*))*2.0

o ((title:acr::Isst title:syn::acr::lIsst title:syn::large
synoptic survey telescope))*1.5



Amusing (at least to me) query

THE —> ((abstract:acr::the)~1.3 | ((author:the, author:thé,

author:thé, author:thég,;the, author:the,* author:the,* author:the,
author:the,* author:thé,* author:thee, author:thee,* author:thé,;the, *
author:thée, ; author:the, ; * author:thee,;the, author:thee,;the, *
author:thee, ; author:thee, ; * author:the,;the, author:the,;the, *
author:the, ; author:the, ; *))~2.0 | bibstem:the | ((first_author:the,
first_author:the, first_author:thé, first_author:the,;the, first_author:the,*
first_author:the,* first_author:the, first_author:the,* first_author:the,*
first_author:thee, first_author:thee,* first_author:thé,;the, *
first_author:thé, ; first_author:thé, ; * first_author:thee,;the,
first_author:thee,;the, * first_author:thee, ; first_author:thee, ; *
first_author:the,;the, first_author:the,;the, * first_author:the, ;
first_author:the, ; *))”5.0 | identifier:the | (title:acr::the)”1.5 |
(year:the)”~2.0)",



Baseline Relevance

. For fulltext search

- Either a combination of constant scores (sort of
mimicking Classic behaviour)

- Or combination of damping boost factors across
fields (when searching across indexes), i.e.
unfielded search

. first_author®*15

. author®*10
. title”8 .....

. Multitude of search features already in place

- Boosting, unfielded search, synonyms...
- Too many to list (over hundred, but that’'s OK, they

are all well tested)



Learning to Rank

. Search features

- Query specific

- Document specific

- User specific

. Most promising features are “external” to the

document/query
. But impact of each individual feature is difficult

to measure
- Need to collect data
- Turn data into signals



#[aiz/>[s/2 o/ g

- -
"

JERIRIPIL s LR B NN N NN R A

2
&

€& > C (@ Notsecure | adsabs.harvard.edu/scorer/#/experiment/results/4

3|3z (0|2~

-
i
=

5[c|e|=|clE|s/alql¢|

E[S|w[a[loelw| [ |%[3|a[3]] 0 2]8]#] )¢

* By B Q@ Qa® e X

Clelsmsl  +
e ve @

i Apps [} Signin @m investing @ byz B mlearning M bureaucracy [) GoogleBookm: [) jQuerify [} Translatingmat [ classicistranier » | @ Other bookmarks
-~
o Scoring Simulateur _
= < (=]
L H Dashboard o I
a Experiment Setup
= Returned Documents
D 0.1836734693877551 0.8999999999999999 0.9009999999999999 false true
i1, Selected Relevant Papers
||
LN Experiment Results A — :
Number of combinations explored: 9360, Time elapsed: 574.750619 s., Progress: 1
New Score Lucene Score Relevant Title Authors Publication
Accomazzi, A; Eléihvhorn,
G.; Kurtz, M. J.; Grant, C.
v a2 .
13.440000000000001 12 “ Creation and Use of Citations in the ADS .
Demleitner, M.;
Thompson, D.; Bohlen, E;
Murrgy! S.S.
Kurtz, M. J.; Eichhorn, G_;
Accomazzi, A.; Grant, C;
10.2 12 The Future of Technical Libraries Henneken, E.; Thompson,
D.; Bohlen, E; Murray, S.
S.
Henneken, Edwin A_;
Kurtz, Michael J;
Eichhorn, Guenther;
D E-prints and journal articles in Arcomezs, Alberto;
10.2 10 Grant, Carolyn S.;

©2017

astronomy: a productive co-existence

Thompson, Donna;
Bohlen, Elizabeth; Murray,
Stephen S; Ginsparg,
Paul; Warner, Simeon

Kurtz, Mlch;el J
Henneken, E. A,;



Learning to Rank

. Simulateur (adsabs.harvard.edu/scorer)
- Platform for simulating query response
- Grid search for optimal set of parameters

- Types of data
. Expert judgment
. Classic results
. User clicks



Collecting signals

. We are going to collect more data
- About users
- About their actions

. Yet the data must be easily accessible
- Temporal (time series database)

. Actionable

- Eventually we'll plug this data into the search
algorithm (online)
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. Search Speed



Search Speed

. Index size decreased by 40%
. Put in place detailed performance

measurements

- But we are not yet using them on a regular basis
. Optimized citation cache creation

- Caused big problems in production

- New code ready for deployment/testing
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Speed

. Some work still remains to be done
- Ascertain how many nodes/machines we need to
run
- What budget
- Effective scaling up/down

. In the end we'll have to do what is needed
- To make user experience fast
- Even if that might be ugly (separate small/big
instances, etc.)



Search Capacity

. Current model

- Slave/master

. Good enough for now
. If index continues to grow lineary

- Distributed (cloud mode)

. Necessary if ADS were to index more

. Second order operations are however a big problem
- How to do the computation in a distributed fashion



Final notes

. The goals are big
- We are deliberately aiming high (or one might add:
setting ourselves for a failure)
- But if half is accomplished, the ADS will be in a very

good shape for the future
. Competitive against any similar project
. But the goal is to be the best, n'est pas?



