
User Interface Updates

Tim Hostetler, Kelly Lockhart and the ADS Team

ADS Users Group Meeting, 20-21 Nov. 2019



Areas of Concern From Last Year
● Slow initial loading speed

● Access for...
○ Crawlers
○ Non-JavaScript Users
○ Reference Managers (extensions, crawlers, etc.)



Addressing Concerns
● Actual loading speed

○ Lazy-loaded assets
■ Load portions of the site only when needed

○ Route-based bundling
■ Pre-bundled assets that are only loaded if the route matches

○ Better caching, Content Delivery Networks (CDNs)

● Perceived loading speed
○ Loading bar

■ Delay showing (Better for fast connections/computers)
■ Updated messages

○ Pre-rendered abstract pages
■ Main part of page is loaded on the server and re-hydrated later



Statistics on Loading Speed
● Payload size and number of requests

○ Before Lazy loading and bundling:

○ Current:

○ Around 42% fewer requests after lazy loading
○ Averaging around 25% smaller payloads by using optimized bundling

● Timings
○ Google Chrome’s Lighthouse report

* Same computer, no network throttling



CurrentBefore



Initial page load time, 2018 vs. 2019

6



Initial page load time, 2018 vs. 2019

7



Initial page load time by country



Search results load time (median: <1s)

9



Search results + widget load time (median: ~1s)

10



Abstract page load time (median: < 0.5s)

11



Access using “Basic HTML” UI
● Server-rendered pages

○ As opposed to the current dynamic pages 

● Near instant loading times for users
○ No loading since requests for results is made server-side and inserted in templates

● Metadata available for crawlers, reference managers, etc.
○ SEO improvements

● Dynamic content loaded via page “hydration”
○ Static HTML is hydrated by JavaScript injection, loading extra functionality when ready

● No JavaScript dependency
● Better mobile experience
● No user accounts, ORCiD, libraries, etc.



https://docs.google.com/file/d/1ff9ucfZmgK0QzYnxE02ZAgg7sO8RdRVD/preview


https://docs.google.com/file/d/19LGLIXxBroj6XynsqdT--rHUFrO-Ykx1/preview


Enhancements Since Last Year
● Cleaner URLs 

○ Got rid of ‘#’ routes
○ Helped with transition, hash-routes don’t work server-side

● Second order operations
○ In the “Explore” menu
○ “Limit to” button

● Classic parity
○ Reference resolver (paper form)
○ Library set operations







Future Work / Challenges
● Site still using outdated JS framework/libraries

○ Refactoring still planned
○ Progressive enhancement

● Accessibility / usability issues
○ Work still needs to be done to upgrade areas
○ Harvard Web Publishing



Refactor / Update
● Current approach: progressive enhancement

○ All new features written in modern framework
○ Each area of site slowly transitioned to new code
○ Clean up and modularize current structure
○ Changes happen gradually

● Future plan: refactor
○ Use current technology, start from scratch if necessary
○ Users would be changed over to new interface when ready
○ Able to redesign and implement newer frameworks more easily
○ More rapid changes

● Challenges
○ Lack of additional UI / UX developer extra effort



Accessibility / usability issues
● Accessibility

○ Continued work to update problem areas
■ Updating color palettes, dark/light mode, etc. 

○ New features written to have better accessibility
○ Updated heading structure, link titles/aria-* attributes, image alt tags, etc.

● Usability
○ Harvard Web Publishing

■ Contract-basis to help with design work
■ Part of feedback loop for future feature designs
■ Help to convert user feedback into actionable changes on the UI



Questions?


