A 65-METER TELESCOPE FOR MILLIMETER WAVELENGTHS

J.W. FINDLAY
S. von HOERNER

NATIONAL RADIO ASTRONOMY OBSERVATORY

CHARLOTTESVILLE VIRGINIA

© NRAO • Provided by the NASA Astrophysics Data System
A 65-METER TELESCOPE FOR MILLIMETER WAVELENGTHS

J. W. Findlay
S. von Hoerner

The report of a design study made by the National Radio Astronomy Observatory.

April 1972

Library of Congress Catalog Card Number 72-90554

National Radio Astronomy Observatory
Edgemont Road
Charlottesville, Virginia 22901

© NRAO • Provided by the NASA Astrophysics Data System
CONTENTS

CHAPTER I.
A SURVEY AND SUMMARY
1. Introduction .. 1
2. The Scientific Objectives of the Telescope 3
3. Special Features of the Design 8
4. The Estimated Cost 11

CHAPTER II.
THE TELESCOPE DESIGN
1. General Description 14
2. Rotation in Azimuth 14
3. The Tower Structure and Elevation Bearings 19
4. The Reflector Structure, The Spherical Joints and the Panels 20
5. The Surface Plates, Their Fabrication and Setting 29
6. The Cassegrain System, The Feed Support and The Observing Rooms 49
7. The Position Reference System 55
8. The Drive and Control System 64
9. The Telescope Computer 72

CHAPTER III.
THE TELESCOPE PERFORMANCE
1. Introduction .. 77
2. The Dynamic Behavior of the Telescope Structure 77
3. The Accuracy of the Homologous Performance 79
4. The Effects of Wind and Temperature 84
5. The Surface and Tracking Accuracy Budgets 91
6. The Estimated Performance Under Various Climatic Conditions 98
7. Performance of Other Radio Telescopes 100

CHAPTER IV.
TELESCOPE SITES
1. Criteria for Site Selection 106
2. Sources of Information on the Primary Criteria 111
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Specific Sites</td>
<td>118</td>
</tr>
<tr>
<td>4</td>
<td>Summary and Conclusions</td>
<td>127</td>
</tr>
</tbody>
</table>

CHAPTER V. ESTIMATES OF COST

1.	Fabrication and Erection Costs	129
2.	Site Development Costs	132
3.	Operating Manpower and Costs	132
4.	The Final Design Phase	133
5.	Cost Escalation	135

APPENDICES

I.	NRAO Reports and Memoranda	139
II.	Systems Development Laboratory Report H-10	140
III.	Engineering Drawings	141
IV.	Reports from Contractors and Others	142
LIST OF FIGURES

Plate 1 - Frontispiece - Artist's conception of the telescope

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Natural limits for steerable radio telescopes.</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Outline drawing of the telescope—horizon position.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Outline drawing of the telescope—zenith position.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 4</td>
<td>The azimuth track and rails.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 5</td>
<td>The side view of an azimuth truck.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 6</td>
<td>The elevation bearings.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 7</td>
<td>The homologous joints which support the panel structures.</td>
<td>23</td>
</tr>
<tr>
<td>Figure 8</td>
<td>An example of a spherical joint (No. 45) in the reflector.</td>
<td>25</td>
</tr>
<tr>
<td>Figure 9</td>
<td>The geometry of the B-panels.</td>
<td>28</td>
</tr>
<tr>
<td>Figure 10</td>
<td>The NRAO surface plate.</td>
<td>32</td>
</tr>
<tr>
<td>Plates 2 and 3</td>
<td>Photographs of the NRAO surface plate.</td>
<td>33 & 34</td>
</tr>
<tr>
<td>Figure 11</td>
<td>The machined contour surface plate.</td>
<td>38</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Measurement of the antenna surface.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 13</td>
<td>The targets used for measuring the surface of the 140-foot telescope.</td>
<td>42</td>
</tr>
<tr>
<td>Figure 14</td>
<td>The use of a pentaprism to measure the antenna surface.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 15</td>
<td>The modulated light beam technique for distance measuring.</td>
<td>47</td>
</tr>
<tr>
<td>Figure 16</td>
<td>The NRAO modulated light beam system.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 17</td>
<td>The geometrical optics of the Casse-grain system.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 18</td>
<td>The feed-support structure.</td>
<td>53</td>
</tr>
<tr>
<td>Figure 19</td>
<td>The principle of the stable reference platform.</td>
<td>58</td>
</tr>
<tr>
<td>Figure 20</td>
<td>A typical record of the angular fluctuations of the optical path used in the reference platform tests.</td>
<td>59</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Power spectrum of the angular fluctuations of the optical path used in the reference platform tests.</td>
<td>60</td>
</tr>
<tr>
<td>Figure 22</td>
<td>A general view of the stable reference platform.</td>
<td>62</td>
</tr>
</tbody>
</table>

© NRAO • Provided by the NASA Astrophysics Data System
Figure 23	Block diagram of the reference platform control system	65
Figure 24	A block diagram of the servo drive for one axis of the telescope	71
Figure 25	Block diagram for one unit of the drive and control system	73
Figure 26	The main modes of oscillation of the telescope	80
Figure 27	One-way zenith absorption of radio waves in the atmosphere	99
Figure 28	Nationwide pattern of clear days	112
Figure 29	Precipitable water over VLA sites Y15 (New Mexico) and Y23 (Arizona)	120
Figure 30	Work and cost schedule	133
PREFACE

The work which is described in this report has been done by a group of scientists and engineers at the National Radio Astronomy Observatory*. The names of two members of that group have been used as authors in order that the report may be easily referenced. As the report shows, a considerable amount of the work has been carried out by engineering companies working with the design group. We wish to acknowledge all contributors to the design, and so we list them below.

<table>
<thead>
<tr>
<th>The NRAO Design Group</th>
<th>Engineering Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. G. Clark</td>
<td>Systems Development Laboratories†</td>
</tr>
<tr>
<td>J. W. Findlay</td>
<td>Los Angeles, California</td>
</tr>
<tr>
<td>D. S. Heeschen</td>
<td>Simpson, Gumpertz & Heger</td>
</tr>
<tr>
<td>V. Herrero</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>O. Heine†</td>
<td>Western Development Laboratories</td>
</tr>
<tr>
<td>W. G. Horne</td>
<td>Division, Philco-Ford</td>
</tr>
<tr>
<td>H. Hvatum</td>
<td>Palo Alto, California</td>
</tr>
<tr>
<td>K. I. Kellermann</td>
<td>The Rohr Corporation</td>
</tr>
<tr>
<td>L. J. King</td>
<td>Chula Vista, California</td>
</tr>
<tr>
<td>J. Payne</td>
<td>LTV Electrosystems</td>
</tr>
<tr>
<td>S. von Hoerner</td>
<td>Dallas, Texas</td>
</tr>
<tr>
<td>C. M. Wade</td>
<td>Radiation Systems Inc.</td>
</tr>
<tr>
<td>W-Y. Wong</td>
<td>McLean, Virginia</td>
</tr>
<tr>
<td>C. Yang</td>
<td>Micro-T Incorporated</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, Pennsylvania</td>
</tr>
</tbody>
</table>

* The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation.

† Mr. O. Heine of the Systems Development Laboratory has worked throughout the design as a member of the design group. He has had Dr. W. Blythe and Mr. J. Muradliyan associated with him in his design work.
In the course of this work we have learned much from discussions with many others experienced in antenna design. One example has been with the staff at the Max-Planck-Institut für Radioastronomie in Bonn. A parallel design study has been carried out by that group; we have exchanged many design details with them and with their associated engineers from Krupp, MAN and Siemens. Similarly, we have benefited from meetings with the members of the antenna group at the Jet Propulsion Laboratory. In recognizing this assistance, for which we are most grateful, we must emphasize that the design presented here is our own, and we do not imply that it has the approval of those whose help we acknowledge.

May we conclude with two expressions of hope? First, that the work reported here may prove to be acceptable to all those who practice the art of using the tools of radio astronomy and, second, that sometime such a radio telescope will be built for them to use.

J. W. Findlay
S. von Hoerner