
The Virial Theorem in Stellar Astrophysics 

 Copyright 2003 

 
 
 

I.  Development of the Virial Theorem 
 
 
 
 
 
 
1.  The Basic Equations of Structure 
  
 Before turning to the derivation of the virial theorem, it is appropriate to review the origin 
of the fundamental structural equations of stellar astrophysics. This not only provides insight into 
the basic conservation laws implicitly assumed in the description of physical systems, but by 
their generality and completeness graphically illustrates the complexity of the complete 
description that we seek to circumvent. Since lengthy and excellent texts already exist on this 
subject, our review will of necessity be a sketch. Any description of a physical system begins 
either implicitly or explicitly from certain general conservation principles. Such a system is 
considered to be a collection of articles, each endowed with a spatial location and momentum 
which move under the influence of known forces. If one regards the characteristics of spatial 
position and momentum as being highly independent, then one can construct a multi-dimensional 
space through which the particles will trace out unique paths describing their history. 
 
 This is essentially a statement of determinism, and in classical terms is formulated in a 
six-dimensional space called phase-space consisting of three spatial dimensions and three 
linearly independent momentum dimensions. If one considers an infinitesimal volume of this 
space, he may formulate a very general conservation law which simply says that the divergence 
of the flow of particles in that volume is equal to the number created or destroyed within that 
volume.  
 
 The mathematical formulation of this concept is usually called the Boltzmann transport 
equation and takes this form: 
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or in vector notation          1.1.1 

S
t p =ψ∇•+ψ∇•+
∂
ψ∂ fv    , 

where ψ is the density of points in phase space, f is the vector sum of the forces acting on the 
particles and S is the 'creation rate' of particles within the volume. The homogeneous form of this 
equation is often called the Louisville Theorem and would be discussed in detail in any good 
book on Classical Mechanics.  
 
 A determination of ψ as a function of the coordinates and time constitutes a complete 
description of the system. However, rarely is an attempt made to solve equation (1.1.1) but rather 
simplifications are made from which come the basic equations of stellar structure. This is 
generally done by taking 'moments' of the equations with respect to the various coordinates. For 
example, noting that the integral of  ψ over all velocity space yields the matter density ρ and that 
no particles can exist with unbounded momentum, averaging equation (1.1.1) over all velocity 
space yields 

S)(
t

=ρ•∇+
∂
ρ∂ u  ,      1.1.2 

where u is the average stream velocity of the particles and is defined by 

∫ψρ
= dv1 vu  .           1.1.3 

For systems where mass is neither created nor destroyed 0S = , and equation (1.1.2) is just a 
statement of the conservation of mass. If one multiplies equation (1.1.1) by the particle velocities 
and averages again over all velocity space he will obtain after a great deal of algebra the Euler-
Lagrange equations of hydrodynamic flow 

∫ −
ρ

−•∇
ρ

−Ψ−∇=∇•+
∂
∂ dv)(11)(

t
uvSuuu

P  .  1.1.4 

Here the forces f have been assumed to be derivable from a potential Ψ. The symbol  is known 
as the pressure tensor and has the form 

P

∫ −−ψ= dv))(( uvuvP .           1.1.5 
These rather formidable equations simplify considerably in the case where many collisions 
randomize the particle motion with respect to the mean stream velocity u .Under these conditions 
the last term on the right of equation (1.1.4) vanishes and the pressure tensor becomes diagonal 
with each element equal. Its divergence then becomes the gradient of the familiar scalar known 
as the gas pressure P. If we further consider only systems exhibiting no stream motion we arrive 
at the familiar equation of hydrostatic equilibrium 

Ψ∇ρ−=∇P  .      1.1.6 
Multiplying equation (1.1.1) by v and averaging over v, has essentially turned the Boltzmann 
transport equation into an equation expressing the conservation of momentum. Equation (1.1.6) 
along with Poisson's equation for the sources of the potential 

ρπ−=Ψ∇ G42 ,       1.1.7 
constitute a complete statement of the conservation of momentum.  
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 Multiplying equation (1.1.1) by vv • or v2 and averaging over all velocity space will 
produce an equation which represents the conservation of energy, which when combined with 
the ideal gas law is 

Fv •∇−χ+ρε=•∇ρ+ρ
dt
dE ,          1.1.8 

where F is the radiant flux, ε the total rate of energy generation and χ is the energy generated by 
viscous motions. If one has a machine wherein no mass motions exist and all energy flows by 
radiation, we have a statement of radiative equilibrium;  
  

ρε=•∇ F  .          1.1.9 
 
 For static configurations exhibiting spherical symmetry these conservative laws take their 
most familiar form: 

 Conservation of mass  ρπ= 2r4
dr

)r(dm  . 

 

 Conservation of momentum  2r
)r(Gm

dr
)r(dP ρ

−=  .                 1.1.10 

 

 Conservation of energy ρεπ= 2r4
dr

)r(dL ,    . Fr4)r(L 2π=

 
   
2.  The Classical Derivation of the Virial Theorem 
 
 The virial theorem is often stated in slightly different forms having slightly different 
interpretations. In general, we shall repeat the version given by Claussius and express the virial 
theorem as a relation between the average value of the kinetic and potential energies of a system 
in a steady state or a quasi-steady state. Since the understanding of any theorem is related to its 
origins, we shall spend some time deriving the virial theorem from first principles. Many 
derivations of varying degree of completeness exist in the literature. Most texts on stellar or 
classical dynamics (e.g. Kurth1) derive the theorem from the Lagrange identity. Landau and 
Lifshitz2 give an eloquent derivation appropriate for the electromagnetic field which we shall 
consider in more detail in the next section. Chandrasekhar3 follows closely the approach of 
Claussius while Goldstein4 gives a very readable vector derivation firmly rooted in the original 
approach and it is basically this form we shall develop first. Consider a general system of mass 
points mi with position vectors ri which are subjected to applied forces (including any forces of 
constraint) fi. The Newtonian equations of motions for the system are then  
 

i
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 The term in the large brackets is the moment of inertia (by definition) about a point and 
that point is the origin of the coordinate system for the position vectors ri. Thus, we have 
 

dt
dIG 2

1=  ,     1.2.3 

 
where I is the moment of inertia about the origin of the coordinate system. 
 
 Now consider 

∑ ∑ •+•=
i

iiiidt
dG rppr  ,    1.2.4 

 
but      ∑ ∑ ∑ ==•=•

i i i

2
iiiiiii T2vmm rrpr  ,                  1.2.5 

 
where T is the total kinetic energy of the system with respect to the origin of the coordinate 
system. However, since p  is really the applied force acting on the system (see equation 1.2.1), 
we may rewrite equation (1.2.4) as follows: 

i

∑ •+=
i

iiT2
dt
dG rf    .             1.2.6 

The last term on the right is known as the Virial of Claussius. Now consider the Virial of 
Claussius. Let us assume that the forces fi obey a power law with respect to distance and are 
derivable from a potential. The total force on the ith particle may be determined by summing all 
the forces acting on that particle. Thus 

∑
≠

=
ij

iji Ff   ,        1.2.7 

where Fij is the force between the ith and jth particle. Now, if the forces obey a power law and 
are derivable from a potential then, 

n
ijijiijiiij ra)r(m −∇=Φ∇=F    .       1.2.8 

The subscript on the ∇-operator implies that the gradient is to be taken in a coordinate system 
having the ith particle at the origin. Carrying out the operation implied by equation (1.2.8), we 
have 

)(ran ji
)2n(

ijijij rrF −−= −    .    1.2.9 
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 Now since the force acting on the ith particle due to the jth particle may be paired off 
with a force exactly equal and oppositely directed, acting on the jth particle due to the ith 
particle, we can rewrite equation (1.2.7) as follows: 

∑ ∑
>

+==
j ij

jiijiji FFFf   .      1.2.10 

Substituting equation (1.2.10) into the definition of the Virial of Claussius, we have 
 

∑ ∑∑
>

•+•=•
i i ij

jjiiijii rFrFrf    .               1.2.11 

It is important here to notice that the position vector ri, which is 'dotted' into the force vector, 
bears the same subscript as the first subscript on the force vector. That is, the position vector is 
the vector from the origin of the coordinate system to the particle being action upon. Substitution 
of equation (1.2.9) into equation (1.2.11) and then into equation (1.2.6) yields: 

UnT2
dt
dG

−=   ,             1.2.12 

where U is the total potential energy.1.1  For the gravitational potential n = -1, and we arrive at 
a statement of what is known as Lagranges’ Identity: 

Ω+== T2
dt

Id
dt
dG

2

2

2
1   .               1.2.13 

 
 To arrive at the usual statement of the virial theorem we must average over an interval of 
time (T0). It is in this sense that the virial theorem is sometimes referred to as a statistical 
theorem. Therefore, integrating equation (1.2.12), we have 
 

∫ ∫∫ −= 00

0 0
00

0
0

dt)t(ndt)t(T2dt
dt
dG1 TT

TTT
U0T

   .                        1.2.14 

 
and, using the definition of average value we obtain: 

[ ] UnT2)0(G)(G1
0

0

−=−T
T

  .            1.2.15 

If the motion of the system over a time T0 is periodic, then the left-hand side of equation (1.2.15) 
will vanish. Indeed, if the motion of the system is bounded [i.e., G(t) < ∞], then we may make 
the left hand side of equation (1.2.15) as small as we wish by averaging over a longer time. Thus, 
if a system is in a steady state the moment of inertia ( I ) is constant and for systems governed by 
gravity 

0T2 =Ω+  .           1.2.16  
 
 It should be noted that this formulation of the virial theorem involves time averages of 
indeterminate length. If one is to use the virial theorem to determine whether a system is in 
accelerative expansion or contraction, then he must be very careful about how he obtains the 
average value of the kinetic and potential energies.  
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3.  Velocity Dependent Forces and the Virial Theorem 
 
 There is an additional feature of the virial theorem as stated in equation (1.2.16) that 
should be mentioned. If the forces acting on the system include velocity dependent forces, the 
result of the virial theorem is unchanged. In order to demonstrate this, consider the same system 
of mass points mi subjected to forces fi which may be divided into velocity dependent )( iw and 
velocity independent forces (zi). The equations of motion may be written as: 
 

iiii zwfp +==    .       1.3.1 
Substituting into equation (1.2.6), we have 

∑ ∑ •+=•−
i i

iiii T2
dt
dG rzrw     .              1.3.2 

Remembering that the velocity dependent forces may be rewritten as 

dt
d i

iiii
r

vw α=α=     .                1.3.3 

We may again average over time as in equation (1.2.12). Thus 

UnT2dt
dt
d1dt

dt
dG1

i0
i

i
i

0
0

0

00 −=•α− ∫ ∑∫ r
rTT

TT
,           1.3.4 

where U is the average value of the potential energy for the "non-frictional" forces. Carrying out 
the integration on the left hand side we have 

[ ] [ ] UnT2)0(r)(r1)0(G)(G1
i

2
i0

2
ii

0
0

0

−=−α+− ∑ T
2T

T
T

 .           1.3.5 

Thus, if the motion is periodic, both terms on the left hand side of equation (1.3.5) will vanish in 
a time T0 equal to the period of the system. Indeed both terms can be made as small as required 
providing the "frictional" forces iw do not cause the system to cease to be in motion over the 
time for which the averaging is done. This apparently academic aside has the significant result 
that we need not worry about any Lorentz forces or viscosity forces which may be present in our 
subsequent discussion in which we shall invoke the virial theorem. 
 
 
4.  Continuum-Field Representation of the Virial Theorem 
 
 Although nearly all derivations of the virial theorem consider collections of mass-points 
acting under forces derivable from a potential, it is useful to look at this formalism as it applies 
to a continuum density field of matter. This is particularly appropriate when one considers 
applications to stellar structure where a continuum representation of the material is always used. 
 
 In the interests of preserving some rigor let us pass from equation (1.2.1) to its analogous 
representation in the continuum. Let the mass mi be obtained by multiplying the density ρ(r) by 
an infinitesimal volume ∆V so that 1.2.1 becomes 
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( )
dt

)V(d
dt
dV
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dVV
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i
∆
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ρ

∆=∆ρ= vvvvf   .              1.4.1 

Conservation of mass requires that 

( ) 0
dt

)V(d
dt
dVV

dt
d

dt
dmi =

∆
ρ+

ρ
∆=∆ρ=  .        1.4.2 

Multiplying this expression by v we see that the first and last terms on the right hand side of 
equation (1.4.1) are of equal magnitude and opposite sign. Thus, if we define a "force density",  
f, so that f ∆V = fi , we can pass to this continuum representation of equation (1.2.1):  

[ ] )()(
dt
d)()( rrvrr pf =ρ=   ,         1.4.3 

where p(r) by analogy to 1.2.1 is just the local momentum density. 
 
 We can now define G in terms of the continuum variables so that 

( ) ∫∫∫ ∫ ρ=•ρ=•ρ=•=
V

2

2
1

V
2
1

V V

dV
dt

drdV
dt
ddV

dt
ddVG rrrrrp   ,  1.4.4 

so that 

( ) dV
dt
drdVr
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dG

V

2
2
1

V

2
2
1 ∫∫

ρ
−ρ=   .              1.4.5 

Once again, one uses conservation of mass requiring that the mass within any sub volume V' is 

constant with time so that 0dt
)'V( =dm   with that sub-volume V' defined such that 

0dV
dt
ddV

dt
d

'V'V

=
ρ

=







ρ ∫∫  .         1.4.6 

Thus, the second integral in equation (1.4.5) after integration by parts is zero. If we take the 
original volume V to be large enough so as to always include all the mass of the object, we may 
write equation (1.4.5) as 

∫ =ρ=
V

2
12

dt
dIdV)r(

dt
d

2
1G   .            1.4.7 

With these same constraints on V we may differentiate equation (1.4.4) with respect to time and 
obtain 

∫∫ •+ρ=



 •+•=

V

2

V

dV)v(dV
dt
d

dt
d

dt
dG fpp rrr .            1.4.8 

 
 The first term under the integral is just kinetic energy density and hence its volume 
integral is .just the total kinetic energy of the configuration and  
 

∫ •+=
V
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Id rf .     1.4.9 
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 Considerable care must be taken in evaluating the second term in equation (1.4.9) which 
is basically the virial of Claussius. In the previous derivation we went to some length [i.e., 
equation (1.2.10)] to avoid "double counting" the forces by noting that the force between any two 
particles A and B can be viewed as a force at A due to B, or a force at B resulting from A. The 
contributions to the virial, however, are not equal as they involve a 'dot' product with the position 
vector. Thus, we explicitly paired the forces and arranged the sum so pairs of particles were only 
counted once. Similar problems confront us within continuum derivation. Thus, each force at a 
field point f (r) will have an equal and opposite counterpart at the source points r . '
 
 After some algebra, direct substitution of the potential gradient into the definition of the 
Virial of Claussius yields 1.2 









−ρρ=

−−•−ρρ−=•

∫ ∫

∫ ∫∫ −

V

n

'V
2
1

V 'V

2n
2
n

V

dV'dV)')('()(n                

dV'dV)')('()')('()(dV

rrrr

rrrrrrrrrf

 .     1.4.10 

Since V = V', the integrals are fully symmetric with respect to interchanging primed with non-
primed variables. In addition the double integral represents the potential energy of ρ(r) with 
respect to ρ(r ') , and ρ(r ') with respect to ρ(r); it is just twice the total potential energy. Thus, 
we find that the virial has the same form as equation (1.2.12), namely, 

∫ −=•
V

ndV Urf  .    1.4.11 

Substitution of this form into equation (1.4.9) and taking n = -1 yields the same expression for 
Lagrange's identity as was obtained in equation (1.2.13), specifically, 

Ω+= T2
dt

Id
2

2

2
1        1.4.12 

Thus Lagrange's identity, the virial theorem and indeed the remainder of the earlier arguments, 
are valid for the continuum density distributions as we might have guessed. 
 
 Throughout this discussion it was tacitly assumed that the forces involved represented 
"gravitational" forces insofar as the force was -ρ∇Φ. Clearly, if the force depended on some 
other property of the matter (e.g., the charge density, ε(r) the evaluation of  would go 

as before with the result that the virial would again be –nU where U is the total potential energy 
of the configuration. 

∫ •
V

dVrf
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5.  The Ergodic Theorem and the Virial Theorem 
 
 Thus far, with the exception of a brief discussion in Section 2, we have developed 
Lagrange's identity in a variety of ways, but have not rigorously taken that finial step to produce 
the virial theorem. This last step involves averaging over time and it is in this form that the 
theorem finds its widest application. However, in astrophysics few if any investigators live long 
enough to perform the time-averages for which the theorem calls. Thus, one more step is needed. 
It is this step which occasionally leads to difficulty and erroneous results. In order to replace the 
time averages with something observable, it is necessary to invoke the ergodic theorem. 
 
 The Ergodic Theorem is one of those fundamental physical concepts like the Principle of 
Causality which are so "obvious" as to appear axiomatic. Thus they are rarely discussed in the 
physics literature. However, to say that the ergodic theorem is obvious is to belittle an entire area 
of mathematics known as ergodic theory which uses the mathematical language of measure 
theory. This language alone is enough to hide it forever from the eye of the average physical 
scientist. Since this theorem is central to obtain what is commonly called the virial theorem, it is 
appropriate that we spend a little time on its meaning. As noted in the introduction, the 
distinction between an ensemble average and an average of macroscopic system parameters over 
time was not clear at the time of the formulation of the virial theorem. However, not too long 
after, Ludwig Boltzmann6 formulated an hypothesis which suggested the criterion under which 
ensemble and phase averages would be the same. Maxwell later stated it this way: "The only 
assumption which is necessary for a direct proof is that the system if left to itself in its actual 
state of motion will, sooner or later, pass through every phase which is consistent with the 
equation of energy".7  
 
 Essentially this constitutes what is most commonly meant by the ergodic theorem. 
Namely, if a dynamic system passes through every point in phase space then the time average of 
any macroscopic system parameter, say Q, is given by 

s

t

tt Qdt)t(Q1LimQ 0

0

>=<





∞→
=>< ∫

+T

TT
 ,         1.5.1 

where <Q>s is some sort of instantaneous statistical average of Q over the entire system.  
 
 The importance of this concept for statistical mechanics is clear. Theoretical 
considerations predict <Q>s whereas experiment provides something which might be construed 
to approximately <Q>t. No matter how rapid the measurements of something like the pressure or 
temperature of the gas, it requires a time which is long compared to characteristic times for the 
system. The founders of statistical mechanics, such as Boltzmann, Maxwell and Gibbs, realized 
that such a statement as equation (1.5.1) was necessary to enable the comparison of theory with 
experiment and thus a great deal of effort was expended to show or at least define the conditions 
under which dynamical systems were ergodic (i.e., would pass through every point in phase 
space). 
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 Indeed, as stated, the ergodic theorem is false as was shown independently in 1913 by 
Rosentha18 and Plancherel 9 more modern version of this can be seen easily by noting that no 
system trajectory in phase space may cross itself. Thus, such a curve may have no multiple 
points. This is effectively a statement of system boundary conditions uniquely determining the 
system's past and future. It is the essence of the Louisville theorem of classical mechanics. Such 
a curve is topologically known as a Jordan curve and it is a well known topological theorem that 
a Jordan curve cannot pass through all points of a multi-dimensional space. In the language of 
measure theory, a multi-dimensional space filling curve would have a measure equal to the space 
whereas a Jordan curve being one-dimensional would have measure zero. Thus, the ergodic 
hypothesis became modified as the quasi-ergodic hypothesis. This modification essentially states 
that although a single phase trajectory cannot pass through every point in phase space, it may 
come arbitrarily close to any given point in a finite time. Already one can sense confusion of 
terminology beginning to mount. Ogorodnikov10 uses the term quasi-ergodic to apply to systems 
covered by the Lewis theorem which we shall mention later. At this point in time the 
mathematical interest in ergodic theory began to rise rapidly and over the next several years 
attracted some of the most, famous mathematical minds of the 20th century. Farquhar11 points 
out that several noted physicists stated without justification that all physical systems were quasi-
ergodic. The stakes were high and were getting higher with the development of statistical 
mechanics and the emergence of quantum mechanisms as powerful physical disciplines. The 
identity of phase and time averages became crucial to the comparison of theory with observation. 
 
 Mathematicians largely took over the field developing the formidable literature currently 
known as ergodic theory; and they became more concerned with showing the existence of the 
averages than with their equality with phase averages. Physicists, impatient with mathematicians 
for being unable to prove what appears 'reasonable', and also what is necessary, began to require 
the identity of phase and time averages as being axiomatic. This is a position not without 
precedent and a certain pragmatic justification of expediency. Some essentially adopted the 
attitude that since thermodynamics “works”, phase and times averages must be equal. However, 
as Farquhar observed “such a pragmatic view reduces statistical mechanics to an ad hoc 
technique unrelated to the rest of physical theory.” 12 
 
 Over the last half century, there have been many attempts to prove the quasi-ergodic 
hypothesis. Perhaps the most notable of which are Birkhoff's theorem13 and the generalization of 
a corollary known as Lewis' theorem.14 These theorems show the existence of time averages and 
their equivalence to phase averages under quite general conditions. The tendency in recent years 
has been to bypass phase space filling properties of a dynamical system and go directly to the 
identification of the equality of phase and time averages. The most recent attempt due to Siniai15, 
as recounted by Arnold and Avez16 proves that the Boltzmann-Gibbs conjecture is correct. That 
is, a "gas" made up of perfectly elastic spheres confined by a container with perfectly reflecting 
walls is ergodic in the sense that phase and time averages are equal. 
 
 At this point the reader is probably wondering what all this has to do with the virial 
theorem. Specifically, the virial theorem is obtained by taking the time average of Lagrange's 
identity. Thus 
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and for systems which are stable the left hand side is zero. The first problem arises with the fact 
that the time average is over infinite time and thus operationally difficult to carryout l.3.  
Farquhar17 points out that the time interval must at least be long compared to the relaxation time 
for the system and in the event that the system crossing time is longer than the relaxation time, 
the integration in equation(1.5.2) must exceed that time if any statistical validity is to be 
maintained in the analysis of the system. It is clear that for stars and star-like objects these 
conditions are met. However, in stellar dynamics and the analysis of stellar systems they 
generally are not. Indeed, in this case, the astronomer is in the envious position of being in the 
reverse position from the thermodynamicists. For all intents and purposes he can perform an 
'instantaneous' ensemble average which he wishes to equate to a 'theoretically determined' time 
average. This interpretation will only be correct if the system is ergodic in the sense of satisfying 
the 'quasi-ergodic hypothesis'. Pragmatically if the system exhibits a large number of degrees of 
freedom then persuasive arguments can be made that the equating of time and phase averages is 
justified. However, if isolating integrals of the motion exist for the system, then it is not justified, 
as these integrals remove large regions of phase space from the allowable space of the system 
trajectory. Lewis' theorem allows for ergodicity in a sub-space but then the phase averages must 
be calculated differently and this correspondence to the observed ensemble average is not clear. 
Thus, the application of the virial theorem to a system with only a few members and hence a few 
degrees of freedom is invalid unless care is taken to interpret the observed ensemble averages in 
light of phase averages altered by the isolating integrals of the motion. Furthermore, one should 
be most circumspect about applying the virial theorem to large systems like the galaxy which 
appear to exhibit quasi-isolating integrals of the motion. That is, integrals which appear to 
restrict the system motion in phase space over several relaxation times. However, for stars and 
star-like objects exhibiting 1050 or more particles undergoing rapid collisions and having short 
relaxation times, these concerns do not apply and we may confidently interchange time and 
phase averages as they appear in the virial theorem. At least we may do it with the same 
confidence of the thermodynamicist. For those who feel that the ergodic theorem is still "much 
ado about nothing", it is worth observing that by attempting to provide a rational development 
between dynamics and thermodynamics, ergodic theory must address itself to the problems of 
irreversible processes. Since classical dynamics is fully reversible and thermodynamics includes 
processes which are not, the nature of irreversibility must be connected in some sense to that of 
ergodicity and thus to the very nature of time itself. Thus, anyone truly interested in the 
foundations of physics cannot dismiss ergodic theory as mere mathematical 'nit-picking'. 
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6.  Summary 
 
 In this chapter, I have tried to lay the groundwork for the classical virial theorem by first 
demonstrating its utility, then deriving it in several ways and lastly, examining an important 
premise of its application. An underlying thread of continuity can be seen in all that follows 
comes from the Boltzmann transport equation. It is a theme that will return again and again 
throughout this book. In section 1, we sketched how the Boltzmann transport equation yields a 
set of conservation laws which in turn supply the basic structure equations for stars. This sketch 
was far from exhaustive and intended primarily to show the informational complexity of this 
form of derivation. Being suitably impressed with this complexity, the reader should be in an 
agreeable frame of mind to consider alternative approaches to solving the vector differential 
equations of structure in order to glean insight into the behavior of the system. The next two 
sections were concerned with a highly classical derivation of the virial theorem with section 2 
being basically the derivation as it might have been presented a century ago. Section 3 merely 
updated this presentation so that the formalism may be used within the context of more 
contemporary field theory. The only 'tricky' part of these derivations involves the 'pairing' of 
forces. The reader should make every effort to understand or conceptualize how this occurs in 
order to understand the meaning of the virial itself. The assumption that the forces are derivable 
from a potential which is described by a power law of the distance alone, dates back at least to 
Jacobi and is often described as a homogeneous function of the distance.  
 
 In the last section, I attempted to provide some insight into the meaning of a very 
important theorem generally known as the ergodic theorem. Its importance for the application of 
the virial theorem cannot be too strongly emphasized. Although almost all systems of interest in 
stellar astrophysics can truly be regarded as ergodic, many systems in stellar dynamics cannot. If 
they are not, one cannot replace averages over time by averages over phase or the ensemble of 
particles without further justification.  
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Notes to Chapter 1 
 
1.1    Since aij = aji for all known physical forces, we may substitute equation (1.2.9) in 
equation (1.2.11) as follows: 
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∑∑∑∑∑

>>

Φ−=−=•
i ij

ij
i ij

n
ijij

i
ii )r(nranrf  .        N 1.1.2 

Since the second summation is only over j > i, there is no "double-counting" involved, and the 
double sum is just the total potential energy of the system. 
 
1.2  As in Section 2, let us assume that the force density is derivable from a potential which 
is a homogeneous function of the distance between the source and field point.5 Then, we can 
write the potential as 

( ) 0n'dV')()(
n

'V

<∀−ρ=Φ ∫ rrrr ,      N 1.2.1 

and the force density is then 
( )∫ −∇ρρ−=Φ∇ρ−=

'V

n
rr 'dV')'()()()()( rrrrrrrf   ,    N 1.2.2 

while the force density at a source point due to all the field points is 
( )∫ −∇ρρ−=Φ∇ρ−=

V

n
'r'r dV')()'()'()'()'( rrrrrrrf ,          N 1.2.3 

where ∇r and∇  denote the gradient operator evaluated at the field point r and the source point 
r’ respectively. Since the contribution to the force density from any pair of sources and field 
points will lie along the line joining the two points, 
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Now , so multiplying equation (N 1.2.2) by r and integrating over 

V produces the same result as multiplying equation (N 1.2.3) by r' and integrating over V'. Thus, 
doing this and adding equation (N 1.2.2) to equation (N 1.2.3). we get 
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1.3  It should be noted that the left hand side of 1.5.2 is zero if the system is periodic 
  and the integral is taken over the period. 
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