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The Two Body Problem 
 
 
 
 
 The classical problem of celestial mechanics, perhaps of all Newtonian 
mechanics, involves the motion of one body about another under the influence of 
their mutual gravitation. In its simplest form, this problem is little more than the 
generalization of the central force problem, but in some cases the bodies are of 
finite size and are not spherical. This may complicate the problem immensely as 
the potential fields of the objects no longer vary as the inverse square of the 
distance. This causes orbits to precess and the objects themselves to undergo 
gyrational motion. This latter motion results from external torques produced on a 
non-spherical object interacting with the object's own spin angular momentum. 
While we will not deal with the more difficult aspects of these phenomena in this 
book, it is useful to understand something of the properties of finite rigid bodies 
so that we are equipped to begin to understand some of the difficulties when they 
arise. Thus, we will begin our discussion of the two-body problem with a 
summary of the properties of rigid bodies. 
 
6.1  The Basic Properties of Rigid Bodies 
 
 Let us begin by assuming that the rigid object we are considering is 
located in some orthonormal coordinate system so that the points within the object 
can be located in terms of some vector r

r
. 
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 a.  The Center of Mass and the Center of Gravity 
 
 Let us define two concepts usually taken for granted in mechanics books. 
First the center of mass is simply a 'mass weighted' mean position for the object. 
Again I will give both the discrete and continuous forms so that 
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A second concept that is often confused with the center of mass is the center of 
gravity. This is often defined to be that point where the force of gravity can be 
considered to be acting. Mathematically that would mean that all torques 
produced by gravity would vanish about that point so that 
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In a Cartesian coordinate frame this could be expressed in coordinate form as 
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where 
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If one writes this as a linear system of equations for the components of the vector 
defining the center of gravity one gets 
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However, 
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This means that the equations are singular and there is no unique definition, so 
that the magnitude of  is undefined. Only if we require that gr cg rr

rr
=  and that 

the gravity vector be constant can we define a unique vector which will be equal 
to the vector to the center of mass. Thus, if the gravity field varies over the object, 
the center of gravity is not uniquely defined. In the case in which it is well defined 
it is the same as the center of mass. Physically one can see this by imagining all 
the points within a body where one could attach a hook suspend the object and not 
have it move. Any such points would serve as the center of gravity. The problem 
arises from the cross product and the definition. If one adds to the standard 
definition that the center of gravity is that point about which all the gravitational 
torques vanish regardless of the orientation of the body with respect to the 
gravitational field, then the definition is more tractable. 
 
 b.  The Angular Momentum and Kinetic Energy about the   
  Center of Mass 
 
 Consider that the object is rotating about some point that is fixed with 
respect to an inertial coordinate frame (i.e. one that has no accelerative motions). 
Then the angular momentum of the object will be 
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where 
ii rv rrr

×ω=    .                                          (6.1.8) 
 
Since we are considering the object to be rigid, then all points within the body 
will rotate with the same angular velocity ω. If that were not true some points 
within the body would catch up with others while moving away from still others 
and we would not call the body rigid. This allows us to separate the rotational 
motion from the positions of points within the object. Thus by making use of the 
vector identities from Chapter 1 we may write the angular momentum of the 
object as 
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Writing out equation (6.1.9) for each component of L
r

we see that equation (6.1.9) 
can be re-written as 

ω•=
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where I is known as the moment of inertia tensor and has components 
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 Now the kinetic energy of a rotating object about some fixed point is just 
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Making use of the so-called vector triple product 
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This can be expressed in terms of the moment of inertia tensor by replacing the 
angular momentum with equation (6.1.10) so that 
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here  is a unit vector pointing in the direction of the angular velocity vector and 
the quantity in square brackets is then just a property of the body and is called the 
moment of inertia about the axis . Clearly the moment of inertia tensor, I , will 
have the symmetric property 
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 c.  The Principal Axis Transformation 
 
 Calculations involving the moment of inertia tensor would be a lot easier 
if there were some coordinate frame in which the tensor were diagonal. It is clear 
from equation (6.1.11) that the tensor is a symmetric tensor so that the off 
diagonal terms satisfy 
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Thus in order to make the tensor diagonal we need only transform to a coordinate 
frame wherein the off-diagonal elements are zero. We saw in Chapter 2 that one 
could reach any orthonormal coordinate frame from any other through a series of 
three coordinate rotations about the successive coordinate axes. This is 
represented by three independent parameters in the transformation (i.e. the 
rotation angles). Since we have three constraints to meet (i.e. making the off-
diagonal elements zero), it is clear that this can be done. Another way of 
visualizing this transformation is to scale the unit vector  by n̂ I  so that 
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In terms of the components of this vector the expression for the moment of inertia 
given by equation (6.1.17) becomes 
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which is the general equation for an ellipsoid. Now there always is a coordinate 
frame aligned with the principal axes of the ellipsoid where the general equation 
for the surface becomes 
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This coordinate system is known as the principal axis coordinate system and it is 
the coordinate frame in which the off-diagonal elements of the moment of inertia 
tensor vanish. The diagonal elements are known as the principal moments of 
inertia, as they are indeed the moments of inertia about the principal axes. They 
are basically the eigenvalues of the moment of inertia tensor and so can be found 
from the determinental equation  
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which is nothing more that a polynomial in I. The principal moments of inertia are 
the roots of that polynomial.  
 
 The moment of inertia is an important concept if one is interested in the 
motion of an object. For example, it is essential for the understanding of 
precession. In the rotational equations of motion for an object the moment of 
inertia plays the role taken by the mass in the dynamical equations of motion of a 
system of particles. 
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6.2  The Solution of the Classical Two Body Problem 
 
 In principle we have assembled all the tools and concepts needed to solve 
some very difficult mechanics problems. To illustrate the methods needed to 
determine planetary motion we will consider the classical two body problem of 
celestial mechanics. We know immediately that we will have two second order 
vector differential equations to solve for the motion of both objects. Each of these 
equations will require six independent constants to specify the complete solution. 
Therefore we may expect to have to find a total of twelve constants of the motion 
before we can consider the problem solved. 
 
 a.  The Equations of Motion 
 
 In order to find the equations of motion for two bodies moving under their 
mutual gravity we shall follow much the same procedure that we did for a central 
force. In order to keep the problem simple we will further assume that the 
potential of each body is that of a point mass ml and m2 respectively. The kinetic 
and potential energies of the system are then 
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where  and  are position vectors to the objects. These vectors are linearly 
independent so they form a suitable set of generalized coordinates in which to 
formulate the Lagrangian equations of motion. Now the elements that enter into 
the Lagrangian equations of motion are 
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where 
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This leads to two vector equations of motion for the two bodies: 
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If we add these equations we get  
0rmrm 2211 =+ &&r&&r     ,                                     (6.2.5) 

which can be integrated immediately twice with respect to time to yield 
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Note that A

r
 and B

r
 are vectors and so contain six linearly independent constants. 

From the definition of the center of mass [equation (6.1.1)] we can write 
BtArc
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which says that at time t = 0 the center of mass was located at )/B( M
r

and was 
moving with a uniform velocity )/A( M

r
. Thus we have immediately found six of 

the twelve constants of the motion. They are the location and velocity of the 
center of mass.  
 
 Since a coordinate frame that undergoes uniform motion is an inertial 
coordinate frame (i.e. no accelerations) the laws of physics will look the same in a 
coordinate frame moving with the center of mass as they did in our initial 
coordinate system. Therefore we will transform to an inertial coordinate frame 
with the origin located at the center of mass. In such a coordinate system 
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We may use this constraint to decouple each of equations (6.2.4) from the other so 
that 
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We can reduce these further by introducing a new vector that runs from one object 
to the other so that 
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Then by subtracting the second of equations (6.2.9) from the first we get 
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This is equivalent to making another coordinate transformation to one of the 
objects since r

r
 is simply the distance between the objects. However, this reduces 

the problem to the one we solved in the previous chapter, since the form of 
equation (6.2.11) is the same as equation (5.1.3). Thus the solution of the two 
body problem is equivalent to the solution of a central force problem where the 
potential is the gravitational potential and the source of the force can be viewed as 
being located in one of the objects.  
 
 Thus we may jump directly to the solution of the problem given by 
equations (5.4.9 -5.4.12) and write 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
=

=

θ−θ+
=

2/1

2

2

2

2
0

m)mG(
EL21e

mG
LP

)cos(e1[
Pr

M

M
    .                               (6.2.12) 

Here we have found three more constants in E, L, and 0θ . We knew that the 
angular momentum and the energy would have to be two of the constants, and 
that an initial value of  is involved should be no surprise. While equations 
(6.2.12) introduce the angular momentum, they only specify its magnitude, and 
we know from the central force problem that the vector is an integral of the 
motion. That is what insures that the motion is planar. Therefore specifying the 
angular momentum specifies two additional linearly independent components (in 
addition to the magnitude). The last remaining constant is the r

0θ

o that appears in 
equation (5.3.3) and specifies the location of the particle in its orbit at some 
specific time. Like , it can be regarded as an initial value of the problem. Thus 
we have all six remaining constants of the motion containing sufficient 
information to uniquely determine the position of each object in space as a 
function of time. 

0θ

 
 b.  Location of the Two Bodies in Space and Time 
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 By choosing a coordinate system with its origin at one of the bodies, we 
are really only concerned with describing the motion of one of the objects with 
respect to the other. While equations (6.2.12) indicate the shape of the orbit, they 



say nothing about how the object moves in time. To describe the motion, we shall 
have to make use of Kepler’s second law, the constancy of the areal velocity. To 
do this we shall have to introduce some new terminology.  
 
 As an example, let us consider the motion of an object about the sun. 
Since we want to describe the motion of an object in its orbit, we shall need some 
means to define specific locations in the orbit as reference points and parameters 
to measure angular positions. We shall presume that the orbit is elliptical with the 
sun at one focus in accord with Kepler's first law, Thus there will be a point in the 
orbit where the object makes it closest approach to the sun, This point is known as 
perihelion since, in general, the point of closest approach to the source of the 
force-field is known as peri*** , where *** is the Greek stem appropriate to the 
object. This point is always located at one end of the semi- major axis of the 
ellipse. In the case of orbits about the sun, the other end of the semi-major axis is 
known as aphelion and is the position furthest from the sun. Since the origin of 
the coordinate system is at the source of the attractive force, the location of the 
object in its orbit can be defined by an angle measured from the semi-major axis -
specifically from the point of perihelion (see Figure 6.1) in the direction of the 
object's motion. This angle is called the true anomaly, and will be denoted by the 
Greek letter ν. Determining it as a function of time essentially solves the problem 
of finding the temporal location of the object. 
 
 Let us choose to start measuring time from perihelion passage so that the 
true anomaly is zero when t = 0. From the solution to the orbit equation [equation 
(6.2.12)] we see that t = 0 will occur when 0θ=θ  so that' 

0θ−θ=ν    .                                         (6.2.13) 
We may then write the orbit solution as 
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where a is the semi-major axis of the ellipse.  
 
 Now we shall appear to digress to some geometry and relate each point on 
the elliptical orbit to a corresponding point on a circle with a radius equal to the 
semi-major axis and whose center is located at the center of the ellipse (again see 
Figure 6.1). An ellipse is simply the projection of a circle that has been rotated 
about its diameter through some angle ψ. Now imagine points [xc ,yc] located on 
the circle and corresponding points [xe,ye] located on the ellipse, For , ec xx =
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where a and b are the semi-major and semi-minor axes of the ellipse respectively. 
Since cosψ is the same for all corresponding )xx( ec =  points on the circle and 
the ellipse, this result must hold for all such points. The Pythagorean Theorem 
assures us that 
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where f is the distance from the center to the focus of the ellipse. From the 
equation for the ellipse [see equation (6.2.14)], we can write for ν = 0 that 
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which becomes 
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If we define an angle E measured from perihelion to a point on the circle [xc ,yc] 
as seen from the center of the circle, then 
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 Using these definitions, , and equation (6.2.18), equation 
(6.2.16) becomes 
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The angle (E) is called the eccentric anomaly. Now we are in a position to relate 
the areal velocity of the particle along the elliptic orbit to the areal velocity of an 
imaginary particle along the circle.  
 
 Imagine such a particle moving in a circle with a radius equal to the semi-
major axis (a) of the ellipse. Both particles would have the same orbital period 
since that depends only on the semi-major axis. However, the imaginary particle 
moving on the circle would move along its orbit at a uniform rate of speed. 
Therefore let us define its angular rate of speed as 
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where P is the orbital period. Here M is the angular distance along the circle that 
the imaginary particle would have moved during the time t specifying the position 
of the real particle on the ellipse. Thus 

ntM =   .                                            (6.2.22) 
 

The angle M is called the mean anomaly. 
 

 
Figure 6.1 shows the geometrical relationships between the elliptic 
orbit and the osculating circle. The areas swept out by radius vectors 
to points on the ellipse and the circle are shown as the shaded areas. 
By relating the sides of the bounded figures, we may relate the area 
swept out in the ellipse to the area swept out on the circle of a 
uniformly moving object. This is the source of Kepler's equation. 

 
We may relate the mean anomaly to the eccentric anomaly by the following 
argument. From the law of areas (Kepler's second law) 
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where A is the area swept out by the radius vector in time t while πab is just the 
area of the ellipse. Now, since each point on the circle is simply a scaled point on 
the ellipse, the areas in equation (6.2.23) scale by (a/b) so that 
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where B is the dot-dashed area of Figure 6.1 so that 
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This expression is known as Kepler's equation since it specifically utilizes 
Kepler's second law to relate the mean anomaly to the eccentric anomaly. We may 
use equation (6.2.20) and the equation for an ellipse [equation (6.2.14)] to relate 
the eccentric anomaly to the true anomaly. By equating the value of r given by 
each of these equations, we get 
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which after some trigonometry becomes: 
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Equation (6.2.27) and Kepler's equation [equation (6.2.25)] , therefore, relate the 
time since perihelion passage to the true anomaly or angular position of the real 
object in its elliptic orbit. The conservation of angular momentum leads to similar 
results for hyperbolic and parabolic orbits. Specifically for hyperbolic orbits we 
have 
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while for parabolic orbits we get 
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The quantity n, which is the mean daily motion, has the same physical 
interpretation for both the elliptic and hyperbolic orbits, but it is defined slightly 
differently for parabolic orbits. 
 
 From Newton's laws of motion and gravitation we can write the mean 
daily motion for objects in elliptic orbit as 

2/13 )aG(P2n M=π=   ,                               (6.2.30) 
 
where M is the sum of the masses of the two bodies. However, in the solar system 
we can use the earth's orbital parameters as units to define the motion of objects 
about the sun and express n in those units and a constant k, known as the 
Gaussian constant as 

2/13])a/a/()[(kn ⊕= uM/M radians/day   .             (6.2.31) 
 
Actually the value of k is taken to be 
 

k=0.01720209895  radians/day  ,                           (6.2.32) 
 
and its value is used to define the astronomical unit. Generally one hears that the 
astronomical unit is the semi-major axis of the earth's orbit by definition, but this 
is not strictly correct. It is k that is fixed with units of mass measured in solar 
masses, time in ephemeris days, and the unit of length is the astronomical unit by 
definition. Indeed, using the modern value for the mass of the earth (in units of 
the solar mass) one would find that the semi-major axis of the earth's orbit is 
about ( ) astronomical units. Brouwer and Clemence71031 −×+ 5 point out that 
Kepler's third law isn't strictly correct if there is a massive third body in the 
system so the fact that the semi-major axis of the earth's orbit is not exactly one 
astronomical unit should not be a bother. As long as the unit of length is well 
defined by equation (6.2.31), we may use it to determine the mean angular motion 
for objects in the solar system. 
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 The analogous expressions for hyperbolic and parabolic orbits are 
 

⎪⎭

⎪
⎬
⎫

=

=

⊕

⊕

         M/M

       M/M

orbitsParabolic])a/q(2/)[(kn

orbitsHyperbolic])a/a/()[(kn
2/13

2/13
h

u

u      .   (6.2.33)   

 
Here ah is called the semi-transverse axis of the hyperbola and q is known as the 
pericentric distance which is simply the distance of closest approach to the second 
object. In the solar system the sun's mass so dominates that M/Mu is effectively 
unity. Thus if we know the type of orbit and orbital scale-length (i.e. semi-major 
axis for the ellipse, semi-transverse axis for the hyperbola, or pericentric distance 
for the parabola) we can determine the mean daily motion from equations (6.2.31 
- 6.2.33). Further knowledge of the time since perihelion passage allows the 
calculation of the mean anomaly M. That and the eccentricity enable us to 
calculate the eccentric anomaly through the solution of Kepler's equation. 
Algebra, in the form of equations (6.2.27-6.2.29), allows for the calculation of the 
true anomaly and the radial distance r from the origin of the coordinate system. 
This, then completely specifies the location of the object in its orbit. Involved as 
this process is, it is relatively straightforward except for the solution of Kepler's 
equation. 
 
 c.  The Solution of Kepler's Equation 
 
 Equations of the form of equation (6.2.25) are known as transcendental 
equations and, in general do not have closed form solutions. Thus, in order to 
solve the problem of orbital motion, we will be forced to a numerical solution of 
Kepler's equation. Much has been written on effective and general numerical 
procedures for such a solution and we will not go into all of those details here. 
Rather we shall adapt a common numerical procedure known as Newton-Raphson 
iteration. Assume that we have an equation of the form 
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and we wish to find that value of x for which the equation is satisfied. A 
procedure for accomplishing this is to guess an initial value x(0) and use the 
following expression to improve it. 
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The process is repeated until 

ε≤
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x
]xx[   ,                                     (6.2.36) 

where ε is some predetermined tolerance. The value of x for which ε = 0 is known 
as the 'fixed-point' of the iteration scheme and a rather large body of knowledge 
has been developed concerning such schemes. The specific one given in equation 
(6.2.35) has the virtue of normally converging quickly to a fixed point and is 
simple. It is called Newton-Raphson iteration and graphically amounts to 
extending a tangent to the function to the point where it intercepts the x-
axis and using that value of x as x

]x[f )1k( +

(k+l) .Clearly, when f(x) is zero, x is a fixed 
point. The application of the method to Kepler's equation yields 
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   .                (6.2.37) 

 
One of the problems with the Newton-Raphson scheme is that it doesn't always 
converge. This is the case with equations (6.2.37). There are values of the 
eccentricity and mean anomaly for which this iteration scheme will not yield an 
answer. However, this occurs only for a small range of M near perihelion and 
very large eccentricities (see Chapter 6 exercises). It will always work for objects 
in elliptical orbits in the solar system except for some long period comets and 
these orbits may be handled in another manner. Thus, for simplicity, we will leave 
the discussion of the solution of Kepler's equation with the Newton-Raphson 
iteration scheme. Those who wish more details on the subject should consult 
Green6. 
 
6.3  The Orientation of the Orbit and the Orbital Elements 
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 The solution to the two body problem consists in describing the motion of 
both bodies in an arbitrary coordinate frame. Since the two bodies are described 
by two vector differential equations of second order, there will be twelve 
constants required for that description. Six of those twelve are required to 
describe the motion of the center of mass of the system. Three more are required 
to locate one object in its orbit relative to the other. The remaining three are 
required to specify the orientation of the orbit with respect to the arbitrary 
coordinate frame. If we assume that the coordinate frame is a spherical coordinate 



frame, then we can use the Euler angles as defined in Chapter 2 to define the 
orbital orientation in that frame. The coordinate frame will have a fundamental 
plane and a direction within that plane that defines how azimuthal angles will be 
measured. For most astronomical coordinate systems of relevance to celestial 
mechanics, that direction is toward the first point of Aries (i.e. the vernal equinox) 
and the fundamental plane will be either the ecliptic or the equator of the earth 
(see Chapter 2). 
 
 Figure 6.2 shows the orbit of an object located in the reference coordinate 
frame and it bears a marked similarity to the last of Figures 2.2. In Figure 2.2 φ 
described the distance from the preferred direction to the line of intersection of 
the two planes known as the line of nodes. In celestial mechanics, this is known as 
the longitude of the ascending node where the notion of "ascending" refers to that 
node where the motion of the object carries it toward positive Z. In the solar 
system, this means that the object would be moving from south to north in the 
sky. We will use Ω to denote this angle. The second of the Euler angles in Figure 
2.2 is θ and measures the angle by which one plane is inclined to the other. In 
celestial mechanics this is known as the angle of inclination and is usually 
denoted by i. The last of the Euler angles in Figure 2.2 is ψ and is used to denote a 
particular point in the inclined plane. For orbital mechanics the most logical point 
in the orbit is the pericenter. Its location is then designated by the angle o called 
the argument of the pericenter. Thus the three defining angles of the orbit are      
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Sometimes the argument of the pericenter is replaced by the strange angular sum 
(o + Ω) which is called the longitude of the pericenter and is denoted by 
 

Pericenter  theof Longitude The ≡+Ω=ϖ o   .                  (6.3.2) 
 
Thus we have defined the three remaining constants required by the equations of 
motion specifying the orientation of the orbital plane. In the solar system, the 
center of attraction is usually the sun and so the pericenter becomes perihelion 
and the fundamental plane is usually the ecliptic. 
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 Figure 6.2 shows the coordinate frames that serve to define the 

orbital elements specifying the orientation of the orbit with 
respect to the ecliptic coordinate system. 

  
 We have repeatedly said that there are twelve constants required to 
uniquely specify the motion of one object about another, but that six of them are 
concerned with the motion of the center of mass of the pair. Since this motion is 
uniform, these six constants are usually ignored when discussing the orbit of the 
object. The remaining six constants constitute the elements of the orbit and can be 
broken into two sets of three. The three that define the orientation of the orbit as 
defined above are taken directly as orbital elements. However, the remaining 
three that specify the size and shape of the orbit as well as the object's location in 
it at some time can be specified in various ways. We found in Chapter 4 that the 
angular momentum and total energy are integrals of the motion and will 
determine the size and shape of the orbit. However, they are not directly 
observable quantities so that a different set of constants more directly related to 
the geometry of the orbit is usually chosen to represent the orbit. These are the 
semi-major axis and the eccentricity. Finally to represent the position of the object 
within its orbit we specify the time when the object is at pericenter, or for the 
solar system, the time of perihelion passage T0. Now in developing the equations 
describing the motion of the object in its orbit, we took the time of perihelion 
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passage to be zero. Thus (t) in equation (6.2.21) and equation (6.2.22) should be 
replaced by 

0Ttt −=    .                                             (6.3.3) 
 
The six constants specifying the motion of the object are known as the elements 
of the orbit of the object and are: 
 
    The Semi-major axis of the orbit ≡a
    The Orbital Eccentricity ≡e
    The Time of Perihelion Passage              (6.3.4) ≡0T
    The Argument of Perihelion ≡o
    The Longitude of the Ascending Node ≡Ω
     i ≡The Inclination of the Orbit        . 
 
While we have now located the object in its orbit, we have yet to find it in the sky. 
 
6.4  The Location of the object in the Sky 
 
 The location of the object in the sky involves nothing more than the 
transformation from the coordinate system specifying the location of the object in 
its orbit to the coordinate system of the observer. The specific nature of this 
transformation depends on the relative location of the source of the attractive 
force and observer. For example, we will consider the object to be in orbit about 
the sun and the observer located on a spinning earth. Since the heliocentric orbital 
elements are generally referred to the ecliptic, the first part of the transformation 
will involve expressing the components of the radius vector to the object in 
ecliptic coordinates. Then we will transform to the equatorial (Right Ascension-
Declination) coordinate system. This is followed by shifting the origin of the 
coordinate system to the center of the earth and finally the astronomical triangle 
may be solved to express the result in the observer's Alt-Azimuth coordinate 
system. 
 
 Imagine a Cartesian coordinate system with its origin coinciding with the 
sun, the z-axis normal to the orbit plane, and the x-axis passing through 
perihelion. In such a coordinate system the components of the radius vector to the 
orbiting object are 
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rr      .                                         (6.4.1) 
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We wish to transform this coordinate frame to the equatorial coordinate frame. 
Therefore we first carry out the inverse Euler rotational transformations that will 
align the x-axis with the direction to the vernal equinox and the z-axis normal to 
the plane defining the orbital elements (usually the ecliptic plane). This will yield 
the components of the vector in ecliptic coordinates as 
 

r)()()('r zxz
rr

oTTT PPP iΩ=   .                               (6.4.2) 
 
Now to express the coordinates in Right Ascension-Declination coordinates, we 
must align the defining planes of the two coordinate systems. This can be 
accomplished by a rotation about the x-axis, pointing toward the vernal equinox, 
through an angle -ε where ε is the angle between the ecliptic and equatorial 
planes. Note that a rotation through a negative angle is equivalent to the inverse 
transformation of the positive rotation. Thus the radius vector can be expressed in 
heliocentric equatorial coordinates as 

'r)("r x
rr

ε= TP     .                                         (6.4.3) 
 
Now the origin of the coordinate system must be transferred to the earth. This is a 
vector transformation and is accomplished by simply subtracting a heliocentric 
vector to the earth from the heliocentric vector locating the object. Thus a radius 
vector from the earth to the object will have geocentric equatorial coordinates of 
 

⊕−Ωε=ρ Xr])()()()([ zxzx
rrr

oTTTT PPPP i    .                (6.4.4) 
 
Here the vector  is the heliocentric equatorial radius vector to the earth. ⊕X
 
 Having arrived at the earth, we need only correct for the observer's 
location on the earth. Remember that the x-axis is still pointing at the vernal 
equinox and the z-axis toward the north celestial pole. Thus to get to the local alt-
azimuth coordinate system, we must align the x-axis with the local prime 
meridian (pointing north) and then bring the z-axis so that it points toward the 
zenith. The first of these transformations can be accomplished by rotating about 
the z- axis (polar axis) through the local hour angle of the vernal equinox, but this 
is just the local sidereal time by definition. At this point the x-axis will lie in the 
plane of the prime meridian, but pointing south (in the northern hemisphere) so 
we must rotate through an additional angle of 180°. If the object happens to be 
close by, it may finally be necessary to transfer the origin from the center of the 
earth to the observer by subtracting the radius vector from the center of the earth 
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to the observer's location. Following this by a rotation through the co-latitude of 
the observer will bring the z-axis so that it points toward the zenith. Thus the 
complete transformation from the orbital coordinates of equation (6.4.1) to the 
true topocentric coordinates of the observer can be written as 
 

{ } ⊕⊕ −−Ωεδ−π=ρ rXr])()()()([)]t(h[])2[(' zxzxzy
rrrr

oTTTT PPPPPP i  .   (6.4.5) 
 
If the transformation from the center of the earth to the true topocentric 
coordinates is carried out as indicated by equation (6.4.5), the vector ⊕r

r  has only 
an x-component equal to the radius of the earth for the observer's latitude and 
longitude. The components of the vector from the observer have the following 
components in the Alt-Azimuth coordinate system: 
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which translates into the Alt-Azimuth coordinates of, 
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Thus we have completely described the motion of an object around the sun to the 
point where we can locate the object in the sky. In the next chapter we shall 
consider the inverse problem of determining the orbital elements from 
observation. 
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Chapter 6: Exercises 
 
1. Given a body which is bounded by the surface 
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ba4z)cba4(
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  ,     

  
  where   a > b > c ,   and  has  a  density  distribution .const)r( =ρ   Find the 

principal moments of inertia and the principal axes of the body. 
 
2. Integrate the equations of motion for the two-body problem to show that 
 
           e = (1+2EL2/mk2)1/2   . 
 
3. Assuming the earth's orbit to be circular and that meteors approach the sun 

in parabolic orbits, between what limits on their relative speed will they hit 
the earth if the gravitational attraction of the earth is neglected? 

 
4. Consider two particles orbiting about one another and having masses m1 

and m2. If the force between the two is given by 
 
    )rr(kF 21

2 rrr
−= , 

 
 show that the orbit of one particle about the other is an ellipse with one 

particle at the center of the ellipse. 
 
5. A rocket is detected approaching Chicago at a range of 3200km, and an 

altitude of 160km above sea level. If the velocity of approach is 24800km/hr 
and the motion is parallel to the surface of the earth, decide if the rocket will 
hit Chicago. Assume that the earth is spherical and that coriolis forces and 
atmospheric drag are negligible. What are the values of r and ν at the instant 
of detection? If it should miss, how much will it miss by? If the azimuth at 
the time of detection is 15o, where is the probable launch site? 
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6. Find the Right Ascension, declination, altitude and azimuth for Mars as seen 
from The Ohio State University campus on March 1, 1988 at 3:00AM EST. 
List all additional constants and their source necessary to solve this 
problem. 

 
 
7. If one has an iterative function that can be written as 
 
                          x(k+1) = T[f(x(k))] , 
 
 then it will converge to a fixed point if and only if 
 

 int)pofixed(xxxx1
x

)k( −<<∃∀<
∂
∂ℑ   . 

 
 Find the range of values of e and E for which Newton-Raphson iteration 

will converge to a solution of Kepler's equation. 
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