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2.1  Basic Assumptions 
 
Any rational structure must have a beginning, a set of axioms, upon which to build. 
In addition to the known laws of physics, we shall have to assume a few things about 
stars to describe them. It is worth keeping these assumptions in mind for the day you 
encounter a situation in which the basic axioms of stellar structure no longer hold. 
We have already alluded to the fact that a self-gravitating plasma will assume a 
spherical shape. This fact can be rigorously demonstrated from the nature of an 
attractive central force so it does not fall under the category of an axiom. 
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However, it is a result which we shall use throughout most of this book. A less 
obvious axiom, but one which is essential for the construction of the stellar interior, 
is that the density is a monotonically decreasing function of the radius. 
Mathematically, this can be expressed as 
 

 ρ(r) ≤ <ρ>(r)     for r > 0 ,                                  (2.1.1) 
where 
 

 <ρ>(r) / M(r)/[4πr3/3] ,                                     (2.1.2) 
 
and  M(r)  is the  mass  interior  to a  sphere of  radius r and is just ∫4 π r2 ρ dr. In 
addition, we assume as a working hypothesis that the appropriate equation of state is 
the ideal-gas law. Although this is expressed here as an assumption, we shall shortly 
see that it is possible to estimate the conditions which exist inside a star and that they 
are fully compatible with the assumption. 
 
 It is a fairly simple matter to see that the free-fall time for a particle on the 
surface of the sun is about 20 min. This is roughly equivalent to the dynamical time 
scale which is the time scale on which the sun will respond to departures from 
hydrostatic equilibrium. Most stars have dynamical time scales ranging from 
fractions of a second to several months, but in all cases this time is a small fraction of 
the typical evolutionary time scale. Thus, the assumption of hydrostatic equilibrium 
is an excellent one for virtually all aspects of stellar structure. In Chapter 1 we 
developed an expression for hydrostatic equilibrium [(equation (1.2.28)], where the 
pressure gradient is proportional to the potential gradient and the local constant of 
proportionality is the density. For spherical stars, we may take advantage of the 
simple form of the gradient operator and the source equation for the gravitational 
potential to obtain a single expression relating the pressure gradient to M(r) and ρ.  
 
 The source equation for the gravitational potential field is also known as 
Poisson's equation and in general it is 
 

 ∇2Ω =  4πGρ  ,                                         (2.1.3) 
which in spherical coordinates becomes 
 

                                 (2.1.4) 
Integrating this over r, we get 
 

                         (2.1.5) 
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 Replacing the potential gradient from equation (1.2.28), we have 
 

                                          (2.1.6) 
This is the equation of hydrostatic equilibrium for spherical stars. Because of its 
generality and the fact that virtually no assumptions are required to obtain it, we can 
use its integral to place fairly narrow limits on the conditions that must prevail inside 
a star.  
 
 In equation (2.1.2), we introduced a new variable M(r). Note that its 
invocation is equivalent to invoking a conservation law. The conservation of mass 
basically requires that the total mass interior to r be accounted for by summing over 
the density interior to r. Thus, 

                                    (2.1.7) 
or its differential form 

                                           (2.1.8) 
 

 
2.2  Integral Theorems from Hydrostatic Equilibrium 
 
   a  Limits on State Variables 
 
  Following Chandrasekhar, 1 we wish to define a quantity Iσ,ν(r) which 
is effectively the σth moment of the mass distribution further weighted by    r−ν . 
Specifically 

                        (2.2.1) 
There are quite a variety of physical quantities which can be related to Iσ,ν. For 
example, 

                           (2.2.2) 
is just the absolute value of the total gravitational energy of the star.  
  
 We can use this integral quantity to place limits on physical quantities of 
interest if we replace ρ by <ρ> as defined by equation (2.1.2). Since  
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                                    (2.2.3) 
we may rewrite Iσ,ν as 
 

         (2.2.4) 
  
 Now since our assumption of the monotonicity of ρ requires ρc ≥ <ρ>(r) ≥ 
ρ(r), we can obtain an inequality to set limits on Iσ,ν. Namely, 
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(2.2.5) 

Now let us relate <P>, <T>, and <g> to Iσ,ν , where these quantities are defined as 
 

                                (2.2.6) 
   
 Making use of the result that the surface pressure and temperature are 
effectively zero compared to their internal values, we can eliminate the temperature 
by using the ideal-gas law, integrate the first two members of equations (2.2.6) by 
parts and eliminate the pressure gradient by utilizing hydrostatic equilibrium. We 
obtain 

                                (2.2.7) 
 
The last of these expressions comes immediately from the definition of g. Applying 
the inequality [(equation (2.2.5)], we can immediately obtain lower limits for these 
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quantities of 

       (2.2.8) 
Since these theorems apply for any gas sphere in hydrostatic equilibrium where the 
ideal-gas law applies, we can use them for establishing the range of values to be 
expected in stars in general. In addition, it is possible to use the other half of the 
inequality to place upper limits on the values of these quantities at the center of the 
star. 
  b   β*  Theorem and Effects of Radiation Pressure  
          
  We have consistently neglected radiation pressure throughout this 
discussion and a skeptic could validly claim that this affects the results concerning 
the temperature limits. However, there is an additional theorem, also due to 
Chandrasekhar1 (p.73), which places limits on the effects of radiation pressure. This 
theorem is generally known as the β* theorem. Let us define β as the ratio of the gas 
pressure to the total pressure which includes the radiation pressure. The radiation 
pressure for a photon gas in equilibrium is just Pr = aT4/3. Combining these 
definitions with the ideal-gas law, we can write 

               (2.2.9) 
Using the integral theorems to place an upper limit on the central pressure, we get 
 

                            (2.2.10) 
Equation (2.2.10), when combined with the last of equations (2.2.9) and solved for 
M, yields 
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             (2.2.11) 
 
 Now we define β* to be the value of β which makes Equation (2.2.11) an 
equality, and then we obtain the standard result that  

                              (2.2.12) 
Since (1-β)/β4 is a monotone increasing function of (1-β), 

                          (2.2.13) 
Equation (2.2.11) can be solved directly for M in terms of β* and thus it places limits 
on the ratio of radiation pressure to total pressure for stars of a given mass. 
Chandrasekhar1 (p.75) provides the brief table of values shown in Table 2.1. 
 
 

 
 As we shall see later, m is typically of the order of unity (for example µ is ½ 
for pure hydrogen and 2 for pure iron). It is clear from Table 2.1, that by the time that 
radiation pressure accounts for half of the total pressure, we are dealing with a very 
massive star indeed. However, it is equally clear that the effects of radiation pressure 
must be included, and they can be expected to have a significant effect on the 
structure of massive stars. 
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2.3  Homology Transformations 
 
The term homology has a wide usage, but in general it means "proportional to" and is 
denoted by the symbol ~ . One set is said to be homologous to another if the two can 
be put into a one-to-one correspondence. If every element of one set, say zi, can be 
identified with every element of another set, say z'i, then z i ~  z'i  and the two sets are 
homologous. Thus a homology transformation is a mapping which relates the 
elements of one set to those of another. In astronomy, the term homology has been 
used almost exclusively to relate one stellar structure to another in a special way.  
 
 One can characterize the structure of a star by means of the five variables 
P(r), T(r), M(r), µ(r), and ρ(r) which are all dependent on the position coordinate r. In 
our development so far, we have produced three constraints on these variables, the 
ideal-gas law, hydrostatic equilibrium, and the definition of M(r). Thus specifying 
the transformation of any two of the five dependent variables and of the independent 
variable r specifies the remaining three. If the transformations can be written as 
simple proportionalities, then the two stars are said to be homologous to each other. 
For example, if 

               (2.3.1) 
then 

            (2.3.2) 
where ξ, ζ, η, and χ stand for any of the remaining structure variables. However, 
because of the constraints mentioned above, C4, C5, and C6 are not linearly 
independent but are specified in terms of the remaining C's. Consider the definition 
of M(r) and a homology transformation from r → r'. Then 
 

                   (2.3.3) 
 
 In a similar manner, we can employ the equation of hydrostatic equilibrium 
to find the homology transformation for the pressure P, since 
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If we take µ to be the chemical composition m, then the remaining structure variable 
is the temperature whose homology transformation is specified by the ideal-gas law 
as 
 

                    (2.3.5) 
so that 

                                  (2.3.6) 
Should we take ξ to be T, then the homology transform for µ is specified and is 

                                           (2.3.7) 
    
 We can use the constraints specified by equations (2.3.3), (2.3.4), and (2.3.6) 
and the initial homology relations [equation (2.3.1)] to find how the structure 
variables transform in terms of observables such as the total mass M and radius R. 
Thus, 

                           (2.3.8) 
Since homology transformations essentially represent a linear scaling from one 
structure to another, it is not surprising that the dependence on mass and radius is the 
same as implied by the integral theorems [equations (2.2.8)]. 
 
 The primary utility of homology transformations is that they provide a "feel" 
for how the physical structure variables change given a simple change in the defining 
parameters of the star, "all other things being equal." An intuitive feel for the 
behavior of the state variables P, T, and p which result from the scaling of the mass 
and radius is essential if one is to understand stellar evolution. Consider the 
homologous contraction of a homogeneous uniform density mass configuration. 
Here the total mass and composition remain constant, and we obtain a very specific 
homology transformation 
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                (2.3.9) 
 
which is known as Lane's Law1 (p.47) and has been thought to play a role in star 
formation. In addition, certain phases of stellar collapse have been shown to behave 
homologously. In these instances, the behavior of the state variables is predictable by 
simple homology transformations in spite of the complicated detailed physics 
surrounding these events. 
 
2.4  Polytropes 
 
We have progressed about as far as we can in setting conditions for stellar structure 
with the assumptions that we made. It is now necessary to add a constraint on the 
structure. Physically, the logical arenas to search for such constraints are energy 
production and energy flow, and we shall do so in later chapters. However, before 
we enter those somewhat complicated domains, consider the impact of a somewhat 
ad hoc relationship between the pressure and the density. This relationship has its 
origins in thermodynamics and results from the notion of polytropic change. This 
gives rise to the polytropic equation of state 

 P(r) = Kρ(r)(n+1)/n                                                                  (2.4.1) 
 
where n is called the polytropic index. Clearly, an equation of state of this form, 
when coupled with the equation of hydrostatic equilibrium, will provide a single 
relation for the run of pressure or density with position. The solution of this equation 
basically solves the fundamental problem of stellar structure insofar as the equation 
of state correctly represents the behavior of the stellar gas. Such solutions are called 
polytropes of a particular index n.      
 
  Many astrophysicists feel that the study of polytropes is of historical 
interest only. While it is true that the study of polytropes did develop early in the 
history of stellar structure, this is so because polytropes provide significant insight 
into the structure and evolution of stars. The motivation comes from the observation 
that ideal gases behave in a certain way when they change in an adiabatic manner. It 
is a generalization of this behavior which is characterized by the polytropic equation 
of state. Later we shall see that when convection is established in the interior of a 
star, it is so efficient that the resultant temperature gradient is that of an adiabatic gas 
responding to hydrostatic equilibrium. Such a configuration is a polytrope. We have 
already seen that the degenerate equations of state have the same form as the 
polytropic equation of state, and so we might properly expect that degenerate 
configurations will be well represented by polytropes. In addition, we shall find that 
in massive stars where the pressure is dominated by the pressure of radiation, the 
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equation of state is essentially that of a photon gas in statistical equilibrium and that 
equation of state is also polytropic. The simple nature of polytropic structure and its 
correspondence to many physical stars provides a basis for incorporating additional 
effects (such as rotation) in a semi-analytical manner and thereby offers insight into 
the nature of the effects in real stars. Thus, for providing insight into the structure and 
behavior of real stars, an understanding of polytropes is essential. However, even 
beyond the domain of stellar astrophysics, polytropes find many applications. Certain 
problems in stellar dynamics and galactic structure can be described by polytropes, 
and the polytropic equation of state has even been used to represent the density 
distribution of dark matter surrounding galaxies. But with the applications to stars in 
mind, let us consider the motivation for the polytropic equation of state. 
 
  a  Polytropic Change and the Lane-Emden Equation 
 
  From basic thermodynamics we learn that the infinitesimal change in 
the heat of a gas Q can be related to the change in the internal energy dU and the 
work done on the gas so that 

                       (2.4.2) 
 
The strange-looking derivative  is known as a Pfaffian derivative, and its most 
prominent property is that it is not an exact differential. A complete discussion of the 
mathematical properties is given by Chandrasekhar1 (p.17). The ideal-gas law can be 
stated in its earliest form as PV = RT, which leads to 
 

 PdV+VdP = RdT                                    (2.4.3) 
 

where R is the gas constant and V is the specific volume (i.e., the volume per unit 
mass). Now let us define the specific heat at constant a Cα as 

                             (2.4.4) 
Here, the differentiation is done in such a way that α remains constant. Thus 
(dU/dT)│V is the specific heat, CV, at constant volume. Using equation (2.4.3) to 
eliminate PdV in equation (2.4.2) we get 

 CP = CV + R                                            (2.4.5) 
where CP is the specific heat at constant pressure. 
 
 With this notion that ( Q/dT)│α is the specific heat at constant α , we make 
the generalized definition of polytropic change to be 
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                                       (2.4.6) 
where C is some constant. Using equations (2.4.2), and (2.4.3) and the definition of 
C we can write 

                               (2.4.7) 
 
Now for an ordinary gas it is common to define the ratio of specific heats (CP/CV) as 
γ. In that same spirit, we can define a polytropic gamma as 
 

                                        (2.4.8) 
By use of the ideal-gas law, we can write 

          (2.4.9) 
 
Thus, we can relate the specific heat C associated with polytropic change to the 
polytropic index n to be found in the polytropic equation of state [equation (2.4.1)].  
So  

 n = 1/(γ'-1)                                           (2.4.10) 
 

If C = 0, then the general relation describes where the change in the internal energy is 
equal to the work done on the gas [see equation (2.4.2)], which means the gas 
behaves adiabatically. If C = 4,  then the gas is isothermal. 
 
 The polytropic equation of state provides us with a highly specific 
relationship between P and ρ. However, hydrostatic equilibrium also provides us 
with a specific relationship between P and ρ, and we may use the two to eliminate 
the pressure P, thereby obtaining an equation in ρ alone which describes the run of 
density throughout the configuration. Differentiating equation (2.1.6) with respect to 
r and eliminating P by means of the polytropic equation of state, we get 
 

                   (2.4.11) 
 
This nonlinear second-order differential equation for the density distribution is 
subject to the boundary conditions ρ(0) = ρc and ρ(R) = 0. Or to put it another way, 
the radius of the configuration is defined to be that value of r for which ρ = 0. The 
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only free parameters in the equation are the polytropic index (n) and the parameter K 
and any solution to such an equation is called a polytrope. The parameter K is related 
to the total mass of the configuration. In addition, the equation is generally known as 
the Lane-Emden Equation. However, in this case, we have written it in physical 
variables. During the nineteenth and early twentieth century, a considerable effort 
was expended in the solution of this equation for various values of the polytropic 
index (n). If one is going to investigate the general solution-set of any equation, it is 
usually a good idea to express the equation in a dimensionless form. This can be 
done to equation (2.4.11) by transformation to the so-called Emden variables given 
by 

                                  (2.4.12) 
where, 
 

                             (2.4.13) 
Here λ is just a scaling parameter useful for keeping track of the units of ρ and plays 
no role in the resulting equation. It is clear that ξ is just a scaled, dimensionless 
radius while θ'’s meaning is rather more obscure. While θ is dimensionless by virtue 
of using λ to absorb the units of ρ, it does vary as ρ(1/n) and is the normalized ratio of 
P/ρ. If we make the substitutions indicated by equation (2.4.12) we obtain the more 
familiar form of the Lane-Emden equation 

                           (2.4.14) 
By picking K and n we can transform any solutions of eq (2.4.14) and obtain the 
solution for the polytrope of a given mass M and index n in terms of the run of 
physical density with position. The non-linear nature of the transformation has had 
the advantage that the boundary conditions of the physical equation can easily be 
written as initial conditions at ξ = 0. The utility of  λ now becomes clear as we can 
scale θ(0) to be 1 so that 

                    (2.4.15) 
The last initial condition comes from hydrostatic equilibrium. As r → 0,   M(r) → 0 
as r3 and ρ → ρc. Thus it is clear from equation (2.1.6) that dP/dr → 0 as well. This 
implies that dθ /dξ → 0 as ξ → 0. 
 
 In principle, we are now prepared to solve the Lane-Emden Equation for any 
polytropic index n. Unfortunately, only three analytic solutions exist, and they are for 
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n = 0, 1, and 5. None of these correspond to particularly interesting physical 
situations, but in the hopes of learning something about the general behavior of 
polytropic solutions we give them:  

                  (2.4.16) 
For n = 0, we see that the solution is monotonically decreasing toward the surface 
which is physically reasonable. This is also true for n = 1, and n = 5 although the rate 
of decline is slower. Indeed, the n = 5 case only, θ asymptotically approaches zero 
from arbitrarily large ξ. If we denote the value of ξ for which θ goes to zero as ξ1, 
then  

                                  (2.4.17) 
 
The value of r which corresponds to ξ1 is clearly the radius R of the configuration. 
For other values of the polytropic index n it is possible to develop a series solution 
which is useful for starting many numerical methods for the solution. The first few 
terms in the solution are 

         (2.4.18) 
 
 
  b   Mass-Radius Relationship for Polytropes 
 
  For these solutions to be of any use to us, we must be able to relate 
them to a configuration having a specific mass and radius. We have already indicated 
how the radius is related to ξ1 and α, which really means that the mass is related to n 
and K. Now let us turn to the relationship between the mass of the configuration and 
the parameters of the polytrope. By using the definition of M(r) and the Lane-Emden 
equation, (2.4.14), to eliminate θn, we can write 

 (2.4.19) 
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for the total mass. Using R = αξ1 to eliminate α for the expression for M, we can 
obtain a mass-radius relation for any polytrope. 
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For a given configuration, equation (2.4.20) can be used to determine K since 
everything else on the right-hand side depends on only the polytropic index n. Thus, 
for a collection of polytropic model stars we can write the mass-radius relation as 

 
 M(n-1)/n R(3-n)/n = (const)(n)  .                             (2.4.21) 

 
  c  Homology Invariants 
 
 We can apply what we have learned about homology transformations to 
polytropes. In general, if θn(ξ) is a solution of the Lane-Emden equation, 

then )A(A n
)1n(
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ξθ−  is also a solution (for a proof see Chandrasekhar6 ). Here A is an 

arbitrary constant, so Aξ is clearly a homology transformation of ξ. This produces an 
entire family of solutions to the Lane-Emden equation, and it would be useful if we 
could obtain a set of solutions which contained all the homology solutions. To do 
this, we must find a set of variables which are invariant to homology transformations. 
Chandrasekhar1 (p.105) suggests the following variables 
 

ξ
θ

ξθ+−=
µ

+=−≡+

ξ
θ
ξθ−

=
>ρ<

ρ
=≡

−

d
d)1n(

]m/kT)[(
]r/)r(GM[

2
3

rlnd
)]r(Pln[dv)1n(

d
d)r(

)r(3
rlnd

)]r(Mln[du

1

h2
3

n

      (2.4.22) 

 
as representing a suitable set of variables which are invariant to homology 
transformations. The physical interpretation of u is that it is 3 times the ratio of the 
local density to the local mean density, while (n+1)v is simply 1.5 times the ratio of 
the local gravitational energy to the local internal energy. In general, these quantities 
will remain invariant to any change in the structure which can be described by a 
homology transformation. We can use these variables to rewrite the Lane Emden 
equation so as to obtain all solutions which are homologous to each other. 
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                                (2.4.23) 
 
 Not all solutions to this equation are physically reasonable. For instance, at    
  ξ = 0 we must require that θ (ξ) remain finite. One can show by substituting into 
hydrostatic equilibrium as expressed in Emden variables, that dθ /dξ = 0 at ξ = 0. 
This requires that at the center of the polytrope the values [u=3, v=0] set the initial 
conditions for the unique solution meeting the minimal requirements for being a 
physical solution. These solutions are known as the E-solutions and we have already 
given a series expansion for the θ E solution in equation (2.4.18). By substituting this 
series into the equations for u and v, and expanding by the binomial theorem we 
obtain the following series solutions for u and v: 

      (2.4.24) 
  
 

 
 Figure 2.1 shows the solution for two common polytropes with physical 
interpretations. The solid lines represent the E-solutions which satisfy 
hydrostatic equilibrium at the origin. The dashed and dotted lines depict 
samples of the F- and M- solutions respectively. While these solutions 
do not satisfy the condition of hydrostatic equilibrium at the center of the 
polytrope, they may represent valid solutions for stars composed of 
multiple polytropes joined in the interior. The solution reaching the 
center must always be an E-solution. The polytrope with n = 1.5 
represents the solution for a star in convective equilibrium, while the n = 
3 polytrope solution is what is expected for a star dominated by radiation 
pressure. 
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As with the θE series, we may find the initial values for the numerical solution of the 
Lane-Emden equation and obtain the solution for a polytrope of any index which 
also satisfies hydrostatic equilibrium at its center. At the other end of the physical 
solution space, as ξ → ξ1,  θ  → 0, but the derivative of θ will remain finite. Thus as  
u → 0,   v → 4. The part of solution space which will be of physical interest will then 
be limited to u ≥ 0, v ≥ 0. Figure 2.1 shows the solution set for two polytropic 
examples including the E-solutions. 
 
  d   Isothermal Sphere 
 
  So far we have said nothing about what happens when the equation 
of state is essentially the ideal-gas law, but for various reasons the temperature 
remains constant throughout the configuration. Such situations can arise. For 
example, if the thermal conductivity is very high, the energy will be carried away 
rapidly from any point where an excess should develop. Such a configuration is 
known as an isothermal sphere, and it has a characteristic structure all its own. We 
already pointed out that an isothermal gas may be characterized by a polytropic C = 
4. A brief perusal of equations (2.4.8) and (2.4.10) will show that this leads to a 
polytropic index of n = 4 and some problems with the Emden variables. Certainly the 
Lane-Emden equation in physical variables [equation (2.4.11)] is still valid since it 
involves only the hydrostatic equilibrium and the polytropic equation of state. 
However, we must investigate its value in the limit as n → 4. Happily, the equation is 
well behaved in that limit, and we get 

                              (2.4.25) 
 
 However, some care must be exercised in transforming to the dimensionless 
Emden variables since the earlier transformation will no longer work. The traditional 
transformation is 

               (2.4.26) 
which leads to the Lane-Emden equation for the isothermal sphere 

                               (2.4.27) 
The initial conditions for the corresponding E solution are ψ(0) = 0 and dψ/dξq = 0 
at ξ = 0. All the homology theorems hold, and the homology invariant variables u 
and v have the same physical interpretation and initial values. In terms of these new 
Emden variables, they are 
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                            (2.4.28) 
 and the Lane-Emden equation in u and v is only slightly modified to account for the 
isothermal condition. 

                                (2.4.29) 
The solution to this equation in the u-v plane is unique and is shown in Figure 2.2. In 
the vicinity of ξ = 0, ψ can be expressed as 

          (2.4.30) 
 
which leads to the following expansions for the homology invariants u and v as given 
by equations (2.4.28). 
 

                 (2.4.31) 
 

 
 
Figure 2.2 shows the solution for the isothermal sphere in the u-v plane. 
The solution is unique. 
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 The physical importance of the isothermal sphere is widespread having 
applications from stellar cores to galaxy structure. So it is worthwhile to emphasize 
one curious aspect of the structure. Direct substitution of a density dependence with 
the form ρ(r) ~ r-2 into equation (2.4.25) shows that such a density law will satisfy 
hydrostatic equilibrium at all points within an isothermal sphere. Thus, ρ(r) ~ r-2 is 
often used to describe the radial density variation in spherically symmetric regions 
which are assumed to be isothermal. 
 
 
  e  Fitting Polytropes Together  
 
  As we shall see later, many stars, including those on the main 
sequence, can be reasonably represented by a combination of polytropes where the 
local value of the polytropic index is chosen to reflect the physical constraints placed 
on the star by the mode of energy transport or possibly the equation of state. Thus, it 
is useful to understand what conditions must hold where the polytropes meet. Let us 
consider a simple star composed of a core and an envelope having different 
polytropic indices (see Figure 2.3). 
 
 Now let q be the fraction of the total mass in the core, n the polytropic index 
of the core, and m the total mass of the core. Physically, we must require that the 
pressure and density be continuous across the boundary. This implies that u and v are 
continuous across the boundary between the two polytropes. Since the initial 
conditions at the center of the core must be u = 3, v = 0, the core solution must be an 
E solution for the core index n. The envelope solution will not, in general, be an E 
solution; but as long as the central point (u=3, v=0) is not encountered, there is no 
violation of hydrostatic equilibrium by such a solution. Thus one can construct a 
reasonable model by proceeding outward along the core solution until the mass of 
the core is reached. This defines the fitting point in the u-v plane. One then searches 
the F or M solutions which meet the core solution at the fitting point, to ensure 
continuity of P and ρ across the boundary. There will be many solutions 
corresponding to different values of the polytropic index of the envelope. Picking 
one such solution, one continues with this solution until ξ1 is reached, at which point 
M(ξ1) should equal m/q. If it does not, then there is no solution for that value of the 
polytropic index of the envelope and another solution at the fitting point should be 
chosen.  
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Figure 2.3 represents a model star composed of two polytropes. The 
outer convective hydrogen envelope can be represented by a 
polytrope of index n = 1.5, while the helium core is isothermal. The 
discontinuous change in u and v resulting from the change in 
chemical composition can be seen as a jump from the isothermal core 
solution toward the origin and the appropriate M-solution for the 
envelope. Such a model can be expected to qualitatively represent the 
evolved phase of a red giant. 

 
The techniques of J.L. Lagrange known as variation of parameters can be utilized to 
convert an error on the mass at ξ1, dm(ξ1), to a correction in the polytropic index δne 
of the envelope solution. Any solution which satisfies the continuity conditions and 
the constraints set by the core mass and mass fraction is unique. In addition, it is 
possible to allow for a discontinuity in the chemical composition at the boundary by 
permitting a discontinuity in the density such that momentum conservation is 
maintained across the boundary. That is, pressure equilibrium must be maintained 
across the boundary. From the ideal-gas law, the ratio of the density in the envelope 
to that of the core is 
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                                            (2.4.32) 
This is equivalent to specifying a jump in u and (n + 1)v by the ratio of the mean 
molecular weights of the core and envelope. Thus the fitting point, when it is 
reached, is displaced toward the origin in u and (n + 1)v by the ratio of the mean 
molecular weights of the envelope and core. This displaced point in the u-v plane is 
the new point from which the solution is to be continued (see Figure 2.3). The 
solution is then completed as in the previous instance. 
 
 By making use of polytropic solutions, it is possible to represent stars with 
convective cores and radiative envelopes with some accuracy and to get a rough idea 
of the run of pressure, density, and temperature throughout the star. Polytropes are 
useful in determining the effects of the buildup of chemical discontinuities as a result 
of nuclear burning. As mentioned earlier, very massive stars are radiation-dominated 
and are quite accurately represented by polytropes of index n = 3            (γ' = 4/3). 
Polytropes often can be used as an initial model which is then perturbed to 
approximate a given physical situation. For relatively little effort, polytropic models 
can provide substantial insight into the behavior of stars in response to various 
changes in physical conditions. We obtain this insight at a relatively low cost. To do 
significantly better, we must do much more. We will have to know, in some detail, 
how energy is transported throughout the star. But before we can do that, we must 
understand the detailed structure of the gas so that we can understand the properties 
which impede that flow of energy. 
 
Problems 
 
1. Use the integral theorems of Chandrasekhar to place limits on the central 

 temperature of a star of given mass M. 
 
2. Estimate the mass of a white dwarf at which the relativistic degenerate 

 equation of state becomes essential for representing its structure. 
 
3. Prove that all solutions to the Lane-Emden equation which remain finite at 

the origin (ξ = 0), must, of necessity, have 
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4. Show that the mass interior to ξ [that is, M(ξ)] in an isothermal sphere is 
given  by 

 
5. Find a series solution for the Lane-Emden Equation in the vicinity of ξ = 0, 

 subject to the boundary condition that (dθ/dξ)│ξ=0 be zero. This solution 
 should have an accuracy of O(ξ12). 

 
6. Find a series solution for the isothermal sphere subject to the same conditions 

that are given in Problem 5. 
 
7. Use the series solutions from Problems 5 and 6 to obtain corresponding series 

 solutions for the homology invariants u and v. 
 
8. Calculate a value for the free-fall time for an object on the surface of the sun 

to arrive at the center of the sun. 
 
9. Show that the results of equation (2.3.8) are indeed correct. State clearly all 

 assumptions you make during your derivation. 
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