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 That the central temperatures of stars are higher than their surface 
temperatures can no longer be in doubt. The laws of thermodynamics thus ensure 
that energy will flow from the center of stars to their surfaces. The physical processes 
that accomplish this will basically establish the temperature gradient within the star. 
This is the remaining relationship required for us to link the interior structure with 
that of the surface. The temperature gradient and along with the conservation laws of 
mass and energy provide the three independent relationships necessary to relate the 
three state variables to the values they must have at the boundaries of the star.  
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1 ⋅ Stellar Interiors 

 Energy can move through a medium by essentially three ways, and they can 
each be characterized by the gas particles which carry the energy and the forces 
which resist these efforts. These mechanisms are radiative transfer, convective 
transport, and conductive transfer, of energy. The efficiency of these processes is 
determined primarily by the amount of energy that can be carried by the particles, 
their number and their speed. These variables set an upper limit to the rate of energy 
transport. In addition, the "opacity" of the material to the motion of the energy-
carrying particles will also affect the efficiency. In the case of radiation, we have 
characterized this opacity by a collision cross section and the density. Another way 
to visualize this is via the notion of a mean free path. This is just the average distance 
between collisions experienced by the particles. In undergoing a collision, the 
particle will give up some of its energy thereby losing its efficiency as a transporter 
of energy. We will see that, in general, there are large differences in the mean free 
paths for the particles that carry energy by these three mechanisms, and so one 
mechanism will usually dominate in the transfer of energy. 
 
 Before we can describe the radiative flow of energy, we must understand 
how the presence of matter impedes that flow. Thus we shall begin our discussion of 
the transport of energy by determining how the local radiative opacity depends on 
local values of the state variables. From the assumption of strict thermodynamic 
equilibrium (STE) we know that any impediment to the flow can be described in 
terms of a parameter that depends only on the temperature. However, to calculate 
that parameter, we have to investigate the detailed dependence of the opacity on 
frequency. 
 
4.1 The Ionization, Abundances, and Opacity of Stellar Material 
 
We have now described the manner in which nuclear energy is produced in most 
stars, but before we can turn to the methods by which it flows out of the star, we 
must quantitatively discuss the processes which impede that flow. Each constituent 
of the gas will interact with the photons of the radiation field in a way that is 
characterized by the unique state of that particle. Thus, the type of atom, its state of 
ionization, and excitation will determine which photons it can absorb and emit. It is 
the combination of all the atoms, acting in consort that produces the opacity of the 
gas. The details which make up this combination can be extremely complicated. 
However, several of the assumptions we have made, and justified, will make the task 
easier and certainly the principles involved can be demonstrated by a few examples. 
 
  a  Ionization and the Mean Molecular Weight 
 
  Our first task is to ascertain how many of the different kinds of 
particles that make up the gas are present. To answer this question, we need to know 
not only the chemical makeup of the gas, but also the state of ionization of the atoms. 
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We have already established that the temperatures encountered in the stellar interior 
are very high, so we might expect that most of the atoms will be fully ionized. While 
this is not exactly true, we will assume that it is the case. A more precise treatment of 
this problem will be given later when we consider the state of the gas in the stellar 
atmosphere where, the characteristic temperature is measured in thousands of 
degrees as opposed to the millions of degrees encountered in the interior. 
 
 We will find it convenient to divide the composition of the stellar material 
into three categories.  

            (4.1.1) 
It is common in astronomy to refer to everything which is not hydrogen or helium as 
"metals". For complete ionization, the number of particles contributed to the gas per 
element is just 

                                           (4.1.2) 
where Zi is the atomic number and Ai is the atomic weight of the element. Thus, the 
number of particles contributed by hydrogen will just be twice the hydrogen 
abundance, and for helium, three-fourths times the helium abundance. In general, 

                                              (4.1.3) 
The limit of equation (4.1.3) for the heavy metals is ½. However, even at 107 K the 
inner shells of the heavy metals will not be completely ionized and so ½ will be an 
overestimate of the contribution to the particle number. This error is somewhat 
compensated by the 1 in the numerator of equation (4.1.3) for the light elements 
where it provides an underestimate of the particle contribution. Thus we take the 
total number of particles contributed by the metals to be ½ Z. The total number of 
particles in the gas from all sources is then 

                       (4.1.4) 
Since everything in the star is classed as either hydrogen, helium, or metals,                
 X + Y + Z = 1 and we may eliminate the metal abundance from our count of the 
total number of particles, to get 

                                (4.1.5) 
 Throughout the book we have introduced the symbol m as the mean 
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molecular weight of the gas without ever providing a clear definition for the quantity. 
It is clearly time to do so, and we can do it easily given the ideal-gas law and our 
expression for the total number of particles N. Remember 

                                        (4.1.6) 
 
The mean molecular weight µ must be defined so that this is a correct expression. 
Thus, 

                                     (4.1.7) 
  b   Opacity 
 
  In general, a photon can interact with atoms in three basic ways 
which result in the photon being absorbed: 
  1.  Bound-bound absorption (atomic line absorption) 
  2.  Bound-free absorption (photoionization) 
  3.  Free-free absorption (bremsstrahlung) 
 
For us to calculate the impeding effect of these processes on the flow of radiation, we 
must calculate the cross section for the processes to occur for each type of particle in 
the gas. For a particular type of atom, this parameter is known as the atomic 
absorption coefficient αn. The atomic absorption coefficient is then weighted by the 
abundance of the particle in order to produce the mass absorption coefficient , 
which is the opacity per gram of stellar material at a particular frequency ν. Since we 
have assumed that the gas and photons are in STE, we can average the opacity 
coefficient over frequency to determine a mean opacity coefficient 

νκ

κ , which will 
represent the average effect on the diffusion of energy through the star of the material 
itself. However, to calculate this mean, we must calculate νκ  itself. As an example of 
how this is done, we shall consider the atomic absorption coefficient of hydrogen and 
"hydrogen-like" elements. 
 
 

 80

Classical View of Absorption  Imagine a classical electromagnetic wave 
encountering an atom. The time-varying electromagnetic field will cause the electron 
to be accelerated so that it oscillates at the same frequency as the wave. However, 
just as an accelerated charge radiates energy, to accelerate a charge requires energy, 
and in this instance it is the energy of the electromagnetic wave. If the electron is 
bound in an atom, the energy may just be sufficient to raise the electron to a higher 
orbit, and we say that a bound-bound transition has taken place. If the energy is 
sufficient to remove the electron and ionize the atom, we say that a bound-free 
transition, or photoionization, has taken place. Finally, if a free electron is passing an 
ion in an unbound orbit, it is possible for the electron to absorb the energy from an 
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electromagnetic wave that happens to encounter this system. Energy and momentum 
are conserved among the two particles and the photon with the result that the electron 
is moved to a different unbound orbit of higher energy relative to the ion. This is 
known as a free-free absorption. 
 
 Quantum Mechanical View of Absorption  In quantum mechanics the 
classical view of a finite cross section of an atom for electromagnetic radiation is 
replaced by the notion of a transition probability. That is, one calculates the 
probability that an electron will make a transition from some initial state to another 
state while in the presence of a photon. One calculates this probability in terms of the 
wave functions of the two states, and it usually involves a numerical integration of 
the wave functions over all space. Instead of becoming involved in the detail, we 
shall obtain a qualitative feeling for the behavior of this transition probability. 
 
 Within the framework of quantum mechanics, the probability that an electron 
in an atom will have a specific radial coordinate is 

                              (4.1.8) 
where i denotes the particular quantum state of the electron (that is, n,j,l) and Ψi is 
the wave function for that state. In classical physics, the dipole moment P

r
 of a 

charge configuration is 

                                   (4.1.9) 
where ρc is the charge density. The quantum mechanical analog is 
 

                              (4.1.10) 
where i denotes the initial state and j the final state. 
 
 Now, within the context of classical physics, the energy absorbed or radiated 
per unit time by a classical oscillating dipole is proportional to P P

rr
• , and this result 

carries over to quantum mechanics. This classical power is 
 

 P ∝ ν4P2                                              (4.1.11) 
    
Since the absorbed power P is just the energy absorbed per second, the number of 
photons of energy hν that are absorbed each second is 

                                          (4.1.12) 
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However, the number of photons absorbed per second will be proportional to the 
probability that one photon will be absorbed, which is proportional to the collision 
cross section. Thus, we can expect the atomic cross section to have a dependence on 
frequency given by 

                                      (4.1.13) 
 In general, we can expect an atomic absorption coefficient to display the 

dependence while the constant of proportionality can be obtained by finding the 
dipole moment from equation (4.1.10). The result for the bound-free absorption of 
hydrogen and hydrogenlike atoms is 

3−ν

        (4.1.14) 
where 

 (4.1.15) 
 A similar expression can be developed for the free-free transitions of hydrogen-like 
atoms: 
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Here, the atomic absorption coefficient depends on the momentum of the "colliding" 
electron. If one assumes that the momentum distribution can be obtained from 
Maxwell-Boltzmann statistics, then the atomic absorption coefficient for free-free 
transitions can be summed over all the colliding electrons and combined with that of 
the bound-free transitions to give a mass absorption coefficient for hydrogen that 
looks like 
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       (4.1.17) 
                                                          
 The summation in equation (4.1.17) is to be carried out over all n such that    
νn < ν. That is, all series that are less energetic than the frequency ν can contribute to 
the absorption coefficient. For us to use these results, they must be carried out for 
each element and combined, weighted by their relative abundances. This yields a 
frequency-dependent opacity per gram νκ  which can be further averaged over 
frequency to obtain the appropriate average effect of the material in impeding the 
flow of photons through matter. However, to describe the mean flow of radiation 
through the star, we want an estimate of the transparency of transmissivity of the 
material. This is clearly proportional to the inverse of the opacity. Hence we desire a 
reciprocal mean opacity. This frequency-averaged reciprocal mean is known as the 
Rosseland mean and is defined as follows: 

                           (4.1.18) 
 
 Here, Bν(T) is the Planck function, which is the statistical equilibrium 
distribution function for a photon gas in STE which we developed in Chapter 1 
[equation (1.1.24)]. That such a mean should exist is plausible, since we are 
concerned with the flow of energy through the star, and as long as we assume that the 
gas and photons are in STE, we know how that energy must be distributed with 
wavelength. Thus, it would not be necessary to follow the detailed flow of photons in 
frequency space since we already have that information. That there should exist an 
average value of the opacity for that frequency distribution is guaranteed by the mean 
value theorem of calculus. That the mean absorption coefficient should have the form 
given by equation (4.1.18) will be shown after we have developed a more complete 
theory of radiative transfer (see Section 10.4). 
 
  Approximate Opacity Formulas Although the generation of the mean 
opacity coefficientk  is essentially a numerical undertaking, the result is always a 
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function of the state variables P, T, ρ, and µ. Before the advent of the monumental 
studies of Arthur Cox and others which produced numerical tables of opacities, much 
useful work in stellar interiors was done by means of expressions which give the 
approximate behavior of the opacity in terms of the state variables. The interest in 
these formulas is more than historical because they provide a method for predicting 
the behavior of the opacity in stars and a basis for understanding its relationship to 
the other state variables. If one is constructing a model of the interior of a star, such 
approximation formulas enable one to answer the question so central to any 
numerical calculation: Are these results reasonable?  In general, these formulas all 
have the form 

          (4.1.19) 
where 0κ depends on the chemical composition µ . Kramer’s opacity is a particularly 
good representation of the opacity when it is dominated by free-free absorption, 
while the Schwarzschild opacity yields somewhat better results if bound-free opacity 
makes an important contribution. The last example of electron scattering requires 
some further explanation since it is not strictly a source of absorption. 
 
  Electron Scattering     The scattering of photons at the energies encountered 
in the stellar interior is a fully conservative process in that the energy of the photon 
can be considered to be unchanged. However, its direction is changed, resulting in 
the photon describing a random walk through the star. This immensely lengthens the 
path taken by the photon and therefore increases its "stay" in the star. The longer the 
photon resides in the star, the greater its path, and the greater are its chances of being 
absorbed by an encounter with an atom. Thus, electron scattering, while not involved 
directly in the absorption of photons, does significantly contribute to the opacity of 
the gas. The photon flow is impeded by electron scattering, first, by redirecting the 
photon flow and, second, by lengthening the path and increasing the photon's 
chances of absorption. 
 
 As long as hν<<mec2, the electron will exhibit little or no recoil as a result of 
its collision with a photon and the photon energy will be unchanged. This case is 
called Thomson scattering and we can use the classical theory of electromagnetism 
to estimate its cross section. The energy radiated or absorbed per unit time by an 
oscillating free electron is 
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                                   (4.1.20) 
However, the power in an electromagnetic wave is given by the Poynting vector 

)HE)](4/(c[S
rrr

×π= . In vacuum, HE
rr

⊥ , and in Gaussian units │E│=│H│. 
Therefore, the magnitude of the Poynting vector is 

                                       (4.1.21) 
The ratio of the power absorbed from the wave to the power in the wave is (dE/dt)/S 
and is the definition of a cross section. Thus, we can write the classical cross section 
for electron scattering as  

                   (4.1.22) 
The quantity e2/(mec2) is known as the classical radius of the electron and is roughly 
that radius for which the field energy of the electron is equal to its rest energy. The 
square of that radius yields a geometric cross section which is 1.5 times the classical 
cross section. This cross section is also known as the Thomson cross section. 
 
 Note that the Thomson cross section is not a function of frequency, which 
makes it particularly easy to incorporate in an expression for opacity. The symbol se 
usually denotes the electron scattering coefficient per gram of stellar material, so that 

                                         (4.1.23) 
However, in the limit where the total number of particles contributed to the particle 
density by metals is ½Z and most of those are electrons, we get the electron density 
to be 

                     (4.1.24) 
which yields an electron scattering cross section per gram of 

                (4.1.25) 
Thus, there is a limit to the scattering coefficient per gram of stellar material of 
something less than 0.5 cm2/g. 
 
 We have now shown how the energy generation rate and opacity per gram of 
stellar material can be related to the state variables P, T, ρ, and µ. You must not 
assume that this discussion is complete in every detail. The detailed calculation of 
these functions is extremely complex and has entertained some of the best minds of 
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the twentieth century. What we have seen is some of the major physical principles 
which affect the outcome of such efforts. For the details of the modern values of 
these functions, you should consult the current literature as refinements continue. 
Nevertheless, from now on, we may assume that we have functions of the form 

                      (4.1.26) 
at our disposal. Now we turn to the problem of describing the flow of energy through 
the star. 
 
 
4.2  Radiative Transport and the Radiative Temperature 

Gradient 
 
Although all forms of energy transport may be present at any given place in a star, 
we will see that their relative efficiency is such that generally only one form will be 
important for describing the flow of energy. The transport of energy by radiation is 
essentially the radiative diffusion of photons through the stellar material. It is the 
opacity of the material that opposes this flow. To establish the interplay between 
thermodynamics and radiative opacity, we assume that all the energy is flowing by 
this process. 
 
  a   Radiative Equilibrium 
 
  Since we are assuming that all the energy is flowing outward by 
means of radiative diffusion, the entire energy produced by the star within a sphere 
of radius r can be characterized by a local luminosity L(r) which is entirely made up 
of photons. When this is the case, we may describe this flow of photons locally by 
defining the radiative flux as 

 F(r) = L(r)/4πr2                                          (4.2.1) 
 
When these conditions prevail, the entire flow of energy is carried by photons and 
the star is said to be in radiative equilibrium. 
 
  b   Thermodynamic Equilibrium and Net Flux 
 
  In Chapter 1 we developed an elegant formalism to describe the flow 
of particles through space. In a later chapter we shall use this to produce an 
extremely general equation of radiative transfer which describes the flow in 
momentum space as well as physical space. But at this point, we are dealing with a 
gas in STE, and that fixes many properties of the gas. For example, we know that the 
phase density f that appears in the Boltzmann transport equation will be the Planck 
function since we have shown that to be the equilibrium distribution function for 
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photons in STE. We also know that while there is a net flow of photons, the energy 
involved in that flow must be small compared to the local energy density; otherwise, 
the photon gas could not be considered in equilibrium.  
 
 Another way of visualizing this is to observe that any system said to be in 
thermodynamic equilibrium cannot have temperature gradients. If it did, there would 
be a flow of energy driven by the temperature gradient. In a star we must have such a 
flow, or the star will not shine. What is important is the relative size of the 
temperature radiant through some volume for which the system is to be considered in 
equilibrium. In the case of the sun, this typical length would be the distance a photon 
travels before it encounters an atom. From the opacity calculations of Chapter 3 and 
our knowledge of the conditions within the sun, we would calculate that the mean 
free path for a photon in the center of the sun is less than a centimeter. Thus, as a 
measure of the extent to which STE is met in the sun, let us calculate 

                         (4.2.2) 
In other words, the change in the local temperature over a scale length appropriate 
for the photon gas is about 1 part in 1011. There are few gaseous structures in the 
universe where the conditions for STE are met better than this. Small as this relative 
temperature gradient is, it drives the luminous flux of the sun, and so we must 
estimate its dependence on the state variables. 
 
  c   Photon Transport and the Radiative Gradient 
 
  Since we know so much about the nature of the photons in the star, 
we need not resort to the basic Boltzmann transport equation in order to describe 
how photons flow. Instead, consider the Euler-Lagrange equations of hydrodynamic 
flow. Since they were derived under fairly general conditions, they should be 
adequate to describe the flow of photons. Equation (1.2.27) provides a reasonably 
simple description of this process. But we are interested in a steady-state description, 
so all explicit time dependence in that equation must vanish. Thus, equation (1.2.27) 
becomes 

                            (4.2.3) 
 
 However, in deriving equation (1.2.27), we averaged the local particle phase 
density over velocity space. For photons traveling at the velocity of light, this does 
not make much sense. Instead, the moment generation which led to the Euler-
Lagrange equations of hydrodynamic flow should be carried out over momentum 
space, or photon frequency. Since this expression is for photons, P is the local 
radiation pressure due to photons and ur  is the mean flow velocity, or diffusion 
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velocity of those photons. However, in equation (1.2.27), p is the local mass density. 
For photons, this translates to the local energy density. In addition, the influence of 
gravity on the photons throughout the star can be estimated by the gravitational red 
shift that photons will experience which is 

                                 (4.2.4) 
 Since the change in the photon energy resulting from moving through the 
gravitational potential is about 1 part in a million, we may safely neglect the 
influence of ∇Φ. In spherical coordinates, all spatial operators in equation (4.2.3) 
simply become derivatives with respect to the radial coordinate, so that equation 
(4.2.3) becomes 

                               (4.2.5) 
where 

                        (4.2.6) 
r

Here <hν> is the average photon energy, and dp  indicates integration over all 
momentum coordinates which, in the absence of a strong potential gradient, can 
be represented by the differential spherical momentum volume 4πp2dp. We can 
then write equation (4.2.5) as 

                 (4.2.7) 
The first term on the right-hand side represents the net flow of momentum and 
can be related to the flow of radiant energy by 
 

               (4.2.8) 
        
and equation (4.2.7) becomes 

                                    (4.2.9) 
 The quantity [F(r)/cρe] is the fraction of photons which are participating in 
the net flow of energy. Thus the radial derivative represents the change in the 
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fraction with r. The only reason for this fraction to change is the interaction of the 
flowing photons with matter. If we define the volume absorption coefficient αv, to be 
the "collision" cross section per unit volume, then the probability per unit length that 
a photon will be absorbed in passing through that volume is just αv. However, the 
probability that one photon will be absorbed per unit length is equal to the fraction of 
n photons that will be absorbed in that same unit length. Thus, the second term on the 
right hand side of equation (4.2.9) becomes 

                             (4.2.10) 
 The radiation pressure gradient is now 
 

                             (4.2.11) 
But in STE the radiation pressure depends on only a single parameter and is given by 

                                      (4.2.12) 
This implies we can write the radiation pressure gradient in terms of the temperature 
as 

                                  (4.2.13) 
 Equating this to the magnitude of the radiation pressure gradient from equation 
(4.2.11), we finally obtain an expression for the radiative temperature gradient: 

                             (4.2.14) 
This relationship specifies how the temperature must change if the energy is being 
carried by radiative diffusion and the specification is made in terms of the state 
variables and parameters that we have already determined characterize the problem. 
 
  d  Conservation of Energy and the Luminosity 
 
  With the advent of the radiant flux F(r), we have introduced a new 
variable into the problem. Relating the flux to the total luminosity [equation (4.2.1)] 
only transfers the source of the problem to the luminosity L(r). That such a parameter 
is important should surprise no one, for the luminosity of a star is perhaps its most 
obvious characteristic. However, it is only with the transport of energy that we are 
faced with the internal energy, stored or produced, arriving at the surface and leaking 
into space. As far as the structure of the star is concerned, this is a "second-order" 
effect. It is only a small part of the internal energy that is lost during a dynamical 
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time interval. However, for the proper understanding of the star as an object in steady 
state, it is a central condition which must be met, for in steady state the energy lost 
must be matched by the energy produced. 
 
 Fortunately, we have an additional fundamental constraint that must be met 
by any physical system which we have not yet imposed - the conservation of energy. 
This is completely analogous to the conservation of mass which we invoked in 
Chapter 2 [equations (2.1.7) and (2.1.8)] only now it is the total energy interior to r 
which must pass through r per unit time is called L(r). Thus,  

                                      (4.2.15) 
The corresponding differential form is 
 

                                    (4.2.16) 
 
4.3   Convective Energy Transport 
 
Our approach to the transport of energy by convection will be somewhat different 
from that for radiation. For radiation, we knew how much energy there was to           
carry −[L(r)/4πr2], and we set about finding the temperature gradient required to 
carry it. For convection, we will anticipate the answer by calculating the amount of 
energy that a super-adiabatic temperature gradient will carry. For a wide range of 
parameters thought to prevail in the stellar interior, we shall discover that the 
adiabatic gradient is adequate to carry all the required energy. But first we must 
determine the adiabatic temperature gradient. 
 
  a   Adiabatic Temperature Gradient 
 
  In Chapter 2 [equation (2.4.6)] we defined polytropic change in terms 
of a specific heat-like quantity C which is equal to the change in heat with respect to 
temperature. For an adiabatic change, the gas does no work on the surrounding 
medium, so that C = 0. The polytropic γ' as defined by equation (2.4.8 ) is  

                                         (4.3.1) 
 
Using equation (2.4.5 ) and the ideal-gas law, we have 

                              (4.3.2) 
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or 

                                               (4.3.3) 
where n is the appropriate polytropic index for an adiabatic gas.  
 
 Now the polytropic equation of state [equation (2.4.1)] and the ideal-gas law 
guarantee that 

                            (4.3.4) 
Forming the logarithmic derivative of P and T with respect to ρ  we get 
 

                              (4.3.5) 
Dividing these two equations yields 
 

                                  (4.3.6) 
which is known as the polytropic temperature gradient and for an adiabatic gas is 
just 

                                    (4.3.7) 
    
  b   Energy Carried by Convection 
 
  Imagine a small element of matter rising as a result of being 
somewhat hotter than its surroundings (see Figure 4.1). We can express the 
temperature difference between the gas element and its surroundings in terms of the 
external temperature gradient and the internal temperature gradient experienced by 
the small element as it rises. We assume that the element is behaving adiabatically, 
and so this internal gradient is the adiabatic gradient and the temperature difference 
is 

                   (4.3.8) 

 91



 
 

1 ⋅ Stellar Interiors 

 
 Figure 4.1 shows a schematic representation of a convective element 
of gas responding to a small temperature difference. 

 
The flux of energy carried by this small convective element will be 

                                 (4.3.9) 
where v is the average velocity of the convective element which we must estimate. 
The buoyant force experienced by the convective element will be determined solely 
by the density difference resulting from its slightly elevated temperature and is  

                                      (4.3.10) 
 Since the convective element rises adiabatically, pressure equilibrium will 
always be maintained during its ascent. Thus we can relate the variation in density to 
the variation in temperature by setting the variation of the ideal-gas law to zero. 

                         (4.3.11) 
We may use this and equation (4.3.8 ) to obtain the average buoyancy acting on the 
convective element. Initially, the buoyancy force is zero since the gradient difference 
does not produce a significant force until the element has traveled some distance. 
Thus, we take the average force to be one-half the maximum force, and we get 
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                         (4.3.12) 
Now the buoyancy force will continuously accelerate the convective element, giving 
it a kinetic energy of (½)ρv2 which we can use to get an estimate of the convective 
velocity v. Thus, 

               (4.3.13) 
which yields a convective velocity of 
 

                          (4.3.14) 
We define  

                                        (4.3.15) 
This quantity l is known as the mixing length and is largely a free parameter of this 
theory of convection from which it takes its name. Typically it is taken to be of the 
order of a pressure scale height, and fortunately for the theory of stellar interiors, the 
results are not too sensitive to its exact value. In terms of the mixing length, the 
convective flux becomes 

                   (4.3.16) 
 
 Now all that remains is to estimate the difference in temperature gradients 
necessary to transport the energy of the star. We will require that the convection 
carry all the internal energy flowing through the star, so that 
       

                                        (4.3.17) 
which yields the gradient difference of 
 

                        (4.3.18) 
 To arrive at some estimate of the significance of this result, let us compare it 
to the adiabatic gradient. We use the adiabatic temperature gradient in equation 
(4.3.7), hydrostatic equilibrium [equation (1.2.28)], and the ideal-gas law to get 
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                       (4.3.19) 
Dividing equation (4.3.18) by the adiabatic gradient we get 

 (4.3.20) 
For the sun, there is some evidence that a mixing length of about one-tenth of a solar 
radius is not implausible. Picking other values for the sun and trying to maximize 
equation (4.3.20), we have the following selection: 

             (4.3.21) 
   Thus, it would seem that the convective gradient will lie within a few tenths 
of a percent of the adiabatic gradient. This is the source of the statement in Chapter 2 
that a polytrope of index 3/2 represents convective stars quite well. Indeed, 
convection is so efficient that the adiabatic gradient will almost always suffice to 
describe convective stellar interiors. This is fortunate since the mixing length theory 
we have discussed here is admittedly rather crude. Unfortunately, this efficiency does 
not carry over into stellar atmospheres because the convective zones are bounded by 
the surface of the star, dropping the mixing lengths to numbers comparable to the 
photon mean free path so that radiation competes effectively with convection 
regardless of the temperature gradient. For stellar interiors, the photon mean free path 
is measured in centimeters and the mixing length in fractions of a stellar radius. Thus 
convection, when established, will always be able to carry the stellar luminosity with 
a temperature gradient close to the adiabatic gradient. 
 
4.4   Energy Transport by Conduction 
 
  a   Mean Free Path 
 
  Consider a simple monatomic gas where the kinetic energy per 
particle is 3kT/2 so that the speed is 

                                               (4.4.1) 
We will let the collisional cross section be just the geometric cross section, so that 
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                                      (4.4.2) 
where r1 and r2 are the radii of the two species of colliding particles. As we did with 
nuclear reaction rates, we get the collision frequency from the effective volume 
swept per unit time σv multiplied by the number density p/m. The time between 
collisions is just the reciprocal of the collision frequency, so that the distance traveled 
between collisions is 

                                       (4.4.3) 
and is known as the mean free path for collisions. 
 
  b   Heat Flow 
 
  The thermodynamic theory of heat says that the heat flux through a 
given area is proportional to the temperature gradient so that 

                                       (4.4.4) 
where Eddington1 gives the conductivity K as 
 

                               (4.4.5) 
If we compare the maximum luminosity obtainable with the conductive flux to the 
total solar luminosity, we have  
 

                             (4.4.6) 
With the gradient estimated as Tc/R⊙ , using the central temperature to make the 
conductivity as large as possible and taking the geometric cross section to be about   
10-20 cm2, we still fail to carry the solar luminosity by at least 5 orders of magnitude. 
Thus, conduction can play no significant role in the energy transport in the sun. 
Indeed, that is true for all normal stars. However, in white dwarf stars, where the 
electrons are degenerate, the mean free path of the electrons is comparable to the 
dimensions of the star itself. Then conduction becomes so important that the internal 
temperature distribution is essentially isothermal. 
 
 If we combine equations (4.2.14) and (4.2.1) we can write the radiative flux 
as 

 95



 
 

1 ⋅ Stellar Interiors 

                             (4.4.7) 
which has the same form as equation (4.4.4). Thus we may define a conductive 
opacity from the conductivity so that 

                                          (4.4.8) 
Then, if necessary, the conductive and radiative fluxes can be combined by 
augmenting the mean radiative opacity, so that 

                                    (4.4.9) 
 
 
 
4.5 Convective Stability 
 
  a  Efficiency of Transport Mechanisms 
 
  We calculated the fluxes that can be transported by radiation, 
convection, and conduction, and we found that they produce rather different 
temperature gradients. However, we have seen from the integral theorems that the 
central temperature is set largely by the mass of the star, and in Chapter 3 we learned 
that the energy produced by nuclear processes will be a strong function of that 
temperature. Thus, virtually all the energy will be produced near the center and, in 
steady state, must make its way to the surface. In general, it will do this in the most 
efficient manner possible. That is, the mode of energy transport will be that which 
produces the smallest temperature gradient and also the greatest luminosity. In short, 
the star will choose among the methods available to it and select that which allows it 
to leak away its energy as fast as possible. 
 
 To carry enough energy to support the luminosity of the sun, conductive 
transport would require an immense temperature gradient. This is another way of 
saying that conduction is not important in the transport of energy. Convection will 
produce a temperature gradient which is nearly the adiabatic gradient and is fully 
capable of carrying all the energy necessary to sustain the solar luminosity. If we 
compare the radiative temperature gradient given in equation (4.2.14), and the 
adiabatic gradient as given in equation (4.3.19), we get 
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                      (4.5.1) 
 
From such an estimate the dominance of one mechanism over another is not obvious. 
Could both methods compete roughly equally? Or is it more likely that one method 
will prevail in part of the star, while the remainder will be the domain of the other. 
We have continually suggested that the latter is the case, and now we shall see the 
reason for this assertion. 
 
  b   Schwarzschild Stability Criterion 
 
  For convection to play any role whatever, convective elements must 
be formed, and the conditions must be such that the elements will rise and fall. The 
statistical distribution law says that particles exist with the full range of velocities, 
and it would be remarkable if the particles were so uniformly distributed that any 
given volume had exactly the same number of particles of each velocity. This would 
be a very special particle distribution and not at all a random one. A random 
distribution would require that on some scale some volumes have more high-speed 
particles than others and hence can be considered to be hotter. In fact, an entire 
spectrum of such volumes will exist and can be viewed as perturbations to the mean 
temperature. Thus, the first of our conditions for convective transport will always be 
met. Temperature fluctuations will always exist. But will they result in elements that 
move? In developing an expression for the adiabatic gradient, we assumed that the 
convective element will expand adiabatically and so do no work on the surrounding 
medium. This is certainly the most efficient way the element can move, and it cannot 
be exactly met in practice. To move, the element must displace the material ahead of 
it. There must be some "viscous" drag on the element requiring the element to do 
"work" on the surrounding medium. So the adiabatic expansion of a convective 
element is clearly the "best it can do" in getting from one place to another. Let us see 
if we can quantify this argument. 
 
 Let us assume that the gas is an ideal gas, and for the reasons mentioned 
above we assume that the element will behave adiabatically.  Under these conditions 
we know that, the element will follow a polytropic equation of state, namely, 

                               (4.5.2) 
Now consider a volume element which is displaced upward and has state variables 
denoted with an asterisk, while the surrounding values are simply P, T, and  ρ (see 
Figure 4.2). 
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 If ρ2
* ≥ ρ2 then the element will sink or will not have risen in the first place. 

Initially, we require the conditions at point 1 to be the same (we are displacing the 
element in an ad hoc manner). Thus, 

                     (4.5.3) 
Adiabatic expansion of the element requires that pressure equilibrium be maintained 
throughout the displacement, so 

                                      (4.5.4) 
We may express the conditions at point 2 in terms of a Taylor series and the 
conditions at point 1 so that 

                         (4.5.5) 
  

 
 Figure 4.2 shows a schematic representation of a convective element 
with state variables denoted by * and surrounded by an ambient medium 
characterized by state variables P,T, and ρ. The element is initially at 
position 1 and is displaced through a distance dr to position 2. 
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Using the equation of state, we may write 
 

       (4.5.6) 
 
If we take ρ2

* ≥ ρ2 to be a condition for stability (i.e., the element will return to its 
initial position if displaced), then equations (4.5.5), and (4.5.6) require that 
 

                                    (4.5.7) 
 
 
The ideal-gas law requires that  

                                 (4.5.8) 
which can be used to replace the density gradient in inequality (4.5.7) to get 
 

                               (4.5.9) 
 
Dividing by dT/dr, we obtain the Schwarzschild stability criterion for a polytropic 
gas  

                           (4.5.10) 
which for a monatomic gas with a γ = 5/3 is just 

                                         (4.5.11) 
 
 Thus, if the logarithmic derivative of pressure with respect to temperature is 
greater than or equal to 2.5, convection will not occur. In other words, if the actual 
temperature gradient is less than the adiabatic gradient, convection will not occur. 
This, then, is our means for deciding whether convection or radiation will be the 
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dominant mode of energy transport. Should radiation be able to transport the energy 
with a temperature gradient less than the adiabatic gradient, no energy will be carried 
by convection, for the gas is stable against the thermal perturbations which must 
exist. However, if this is not the case, convection will be established; and it is so very 
efficient that it is capable of carrying all the energy with a temperature gradient that 
is just slightly super-adiabatic. For most of stellar structure, we may regard energy 
transport as being bimodal; either radiation or convection will transport the energy, 
with the decision being made by equation (4.5.10). The Schwarzschild stability 
criterion has been shown to be quite general and will hold under the most varied of 
conditions, including those stars where general relativity must be included to 
describe their structure. 
 
4.6   Equations of Stellar Structure 
 
Having settled the mode of energy transport, we are in a position to describe the 
structure of a star in a steady-state condition. This is a good time to review briefly 
what we have done. The equations of stellar structure arise from conservation laws 
and relationships developed from the local microphysics. In Chapter 1, we posed the 
basic problem of stellar interiors to be the description of the variation of state 
variables P, T, and γ with position in the star. For spherical stars, this amounts to 
indicating their dependence on the radial coordinate r. In developing that description, 
we introduced additional variables and their relation to the state variables so that by 
now our list of parameters has grown to nine members, P(r), T(r), p(r), M(r), L(r), 
ε(r), κ (r), γ(r),and µ(r). To specify these parameters, we have at our disposal three 
conservation laws and a transport equation in addition to three functional 
relationships derived from the microphysics. The function γ(r) can also be specified 
by microphysics and is usually given by its adiabatic value. Only the variation of µ(r) 
needs to be specified ab initio. When we move to the stage of evolving the stellar 
models, the chemical composition will need to be specified for the initial model since 
the processes of nuclear energy generation will tell us how the composition changes 
with time. However, we must, at least initially, specify both the composition of the 
star and how it varies throughout the entire star. The use of a convective theory of 
transport which attempts to improve on the adiabatic gradient will also introduce 
another parameter, known as the mixing length, which must also be specified ab 
initio. 
 
 The constraints posed by the conservation laws take the form of differential 
equations whose solution is subject to a set of boundary conditions.  Below is a 
summary of these differential equations and their origin: 
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 (4.6.1) 
   
 
In addition to these differential equations we have the following relations from the 
microphysics: 
 

 (4.6.2) 
These eight relationships and the chemical composition completely specify the 
structure of the star. We now turn to describing methods by which their solution can 
be obtained. 
 
 
4.7   Construction of a Model Stellar Interior 
 
The construction of stellar models in steady state is essentially a numerical procedure 
which has been the subject of study of a large number of astrophysicists since the 
early 1950s and the pioneering work of Harm and Schwarzschild2. Basically two 
methods have been employed to solve the equations. The early work utilized a 
scheme described by Schwarzschild which amounts to a straightforward numerical 
integration of the differential equations of stellar structure. In the early 1960s, this 
procedure was superceded by a method due to Henyey which replaces the 
differential equations with a set of finite difference equations whose solution is 
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carried out globally and enables one to include time-dependent phenomena in a 
natural way. However, since this method requires an initial solution which is usually 
obtained by the Schwarzschild procedure, we describe both methods. 
 
  a   Boundary Conditions 
 
  Using the functional relations given by equations (4.6.2), we may 
reduce the problem of solving the structure equations to one of finding solutions for 
the four differential equations given in equations (4.6.1). These constitute a set of 
four nonlinear first-order differential equations in four unknowns. In general, such a 
system will have four constants of integration which must be specified to guarantee a 
solution. In principle, two of these constants are specified by requiring that the model 
be physically reasonable. These are 

                                (4.7.1) 
At the other end of the range of the independent variable, 

                             (4.7.2) 
   
 
 However, five constants are specified by equations (4.7.1), and (4.7.2), if R* 
is included as a parameter. Only four of these can be linearly independent. Thus, if 
one specifies M* and R*, the solution will specify L*. Another aspect of the problem 
is that the constants are not all specified at the same boundary, and so it is not 
possible to treat the problem as an initial-value problem and to solve by 
straightforward numerical integration. Such problems are known as two-point 
boundary-value problems, and one must essentially guess the missing integration 
constants at one boundary, obtain the numerical solution complete to the other 
boundary, and adjust the guesses until the specified integration constants at the far 
boundary are obtained. A further problem arises from the fact that the equations of 
hydrostatic equilibrium and energy transport are numerically unstable as r → 0 
because the derivatives require the calculation of "0/0" at the origin. However, the 
problem can be recast as a double-eigenvalue problem with the fitting (solution 
adjustment) taking place in the interior but away from the boundary. This is 
essentially the Schwarzschild approach. 
 
  b  Schwarzschild Variables and Method 
 
  When one is searching for the numerical solution to a physical 
problem, it is convenient to re-express the problem in terms of a set of dimensionless 
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variables whose range is known and conveniently limited. This is exactly what the 
Schwarzschild variables accomplish. Define the following set of dimensionless 
variables: 
 

             (4.7.3) 
 
Note that the first three variables are the fractional radius, mass, and luminosity, 
respectively, while the two at the right represent the pressure and temperature 
normalized by a constant which describes the way they vary homologously. In 
addition, let us assume that the opacity and energy generation rate can be 
approximated by 
 

                      (4.7.4) 
 
 The differential equations of stellar structure then become 
 

 (4.7.5) 
       
which are subject to the boundary conditions 
 

                      (4.7.6) 
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 The parameters C(n,s) and D(λ,ν) are the eigenvalues of the problem, and 
these values specify the type of star being considered. In physical variables they are 
 

        (4.7.7) 
 
 Note that the ideal-gas law has been used to eliminate the density from the 
problem, and this may cause some problems with the solution at the surface where 
the pressure and temperature essentially go to zero, in addition to the numerical 
problems at the center when x → 0. However, Schwarzschild shows that near the 
surface one may approximate the dimensionless pressure p and dimensionless 
temperature t by 
 

         (4.7.8) 
     
 
 If the star has a convective core, then all the energy is produced in a region 
where the structure is essentially specified by the adiabatic gradient and so the 
energy conservation equation [equation (4.7.5c)] is redundant. This means that the 
eigenvalue D(λ,ν) is unspecified and the problem will be solved by determining 
C(n,s) alone. Such a model is known as a Cowling model. The additional constraints 
on the solution are specified by the mass and size of the convective core (qc and xc). 
These are determined by the value of x for which d(ln p)/d(ln t) < 2.5, and the star 
becomes subject to the radiative temperature gradient. The stellar luminosity is then 
L = Lc and for the envelope f = 1. While such a scheme works well for models with 
convective cores, numerical problems will generally occur at the center should it be 
in radiative equilibrium and the solution obtained numerically. However, a slightly 
different set of dimensionless variables can be defined where the pressure and 
temperature are scaled by their values at the center of the star. The differential 
equations of stellar structure become stable at r = 0 since the dimensionless pressure 
and temperature are both unity at the center by definition. One then, integrates 
outward from the center with Pc and Tc as eigenvalues. The stellar mass, luminosity, 
and radius can be related to these new eigenvalues. That there are two distinct 
eigenvalues is demonstrated by the surface boundary condition that both the surface 
pressure and surface temperature must vanish at the same value of x.     
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Unfortunately the equations of stellar structure become numerically unstable near the 
surface for the same reasons that required the approximation of the solutions of 
equations (4.7.5) by equation (4.7.8). Although the errors in the model can be made 
small with the aid of modern computers, it is bad practice to numerically solve 
equations which are inherently unstable. For that reason, the usual procedure is to 
integrate from both the outside and the inside and to make the fit at the boundary 
between the core and envelope. The approximations near the surface are still present, 
but their effect on the solution is minimized. In actual practice, the fitting can be 
accomplished in the U-V plane where the solutions are homologously invariant. The 
fitting procedure is similar to that described in Chapter 2. 
 
 Since Schwarzschild introduced this method of solution of the equations of 
stellar structure in the 1950s, many variants have been used by numerous 
investigators. In one form or another, all variants suffer from problems similar to 
those that plague the Schwarzschild procedure. In general, this approach to the 
numerical solution of two-point nonlinear boundary-value problems always suffers 
from the propagation of errors from one boundary to the other. The most serious of 
these errors are usually the truncation errors associated with the numerical 
integration scheme which tend to be systematic. However, this approach enabled the 
generation of stellar models which represented the steady-state aspect of stars for the 
first time. Although qualitative information about stellar evolution can be gained 
from polytropes (and we do so in Chapter 5), specific and detailed descriptions of 
stellar evolution require the generation of steady-state models. However, some 
aspects of stellar evolution happen on time scales which are very short compared to 
the thermal time scale, and in some instances short compared to the dynamical time 
scale. Often, substantive changes occur to the internal structure which produces only 
small changes at the surface. Thus, minor changes in the surface boundary conditions 
can reflect monumental changes in the internal structure of the star. In addition, we 
must include the time-dependent terms in the equations describing the conservation 
of momentum and energy. Specifically, if some of the generated energy does work 
on the star, causing it to expand as energy is liberated by contraction, then this 
energy must be included in the energy conservation equation relating the stellar 
luminosity to the sources of energy. This is usually accomplished by keeping track of 
the time rate of change of the entropy.  The direct integration scheme does not 
readily lend itself to the inclusion of such terms. Such models are no longer merely 
steady-state models, and we will require more sophisticated tools to deal with them. 
 

c   Henyey Relaxation Method for Construction of Stellar Models 
  
  To overcome some of the numerical instability problems described in 
the previous section, Louis Henyey et al3. developed a superior numerical scheme in 
the early 1960s. This method is the foundation for all modern stellar-model 
calculations. His approach was to transform the problem to a set of variables in 
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which the nonlinearity of the differential equations was minimized. The differential 
equations of stellar structure were then replaced with a set of finite difference 
equations whose solution could be carried out simultaneously over the entire model. 
This tended to reduce the effect of truncation error by spreading it more or less 
evenly across the model. Furthermore, the addition of time-dependent terms proved 
to be relatively easy to incorporate in the structure equations. We do not describe all 
the details that make this method so powerful, but only sketch the principles 
involved. 
 
 We begin by replacing the independent variable r with M(r). Henyey noticed 
that the behavior of the equations was far more linear when the mass interior to r was 
used as the independent variable. The radial coordinate then becomes a dependent 
variable whose value must be found for any particular M(r). If we make this 
transformation, the four differential equations of stellar structure become 
 

 (4.7.9) 
   
    
Here we have explicitly included the time dependent entropy term in the energy 
equation for purposes of example. In addition, we have written the energy transport 
term in a general manner which can accommodate either radiation or convection. 
Now we divide the star into N - 1 zones, starting with the center as the first point and 
ending at the surface or some outer point where the boundary conditions are known. 
By approximating the derivatives of equations (4.7.9) by the difference of the 
parameters at adjacent points, we get the following finite difference equations: 
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                  (4.7.10) 

 
 The subscript i + ½ is used exclusively on the right-hand side of equations 
(4.7.10) to indicate that the value to be used is intermediate between the values at i 
and i + 1. It will turn out that we must have an initial guess of the model's structure in 
order to solve the finite difference equations. It is this guess which may supply the 
initial information for evaluating the parameters at the points i + ½. Since the mass 
points Mi represent the independent variable of this problem, the four equations 
given in equations (4.7.10) contain eight unknowns. However, we have N - 1 
systems of such equations with considerable overlap in unknowns among them. The 
situation at the outer zone will be handled somewhat differently since there is no N + 
1 point. Thus if we count the total number of equations we have 4N - 4. But at each 
point there are only four unknowns, making the total number of unknowns of 4N. 
The remaining four constraints are essentially the boundary conditions of the 
problem. By analogy to the Schwarzschild problem, let us take the central boundary 
conditions to be r1 = L1 = 0, which removes two of the additional unknowns. Now if 
we choose two of the remaining unknowns at the surface, such as rN and LN, the 
problem is completely specified. Indeed, if we choose the surface pressure to be zero, 
then choosing a star of a particular mass and radius (and distribution of chemical 
composition) will specify the stellar configuration. One of the motivating notions 
that led Henyey to this type of technique was the ability to match a stellar interior to 
a model of the stellar atmosphere. This technique is ideally suited to do this. One 
simply takes as the outer zone that point where the physical parameters are known as 
the result of a separate study. In the second part of this book, we present a theory of 
stellar atmospheres which provides far more accurate surface boundary conditions 
than those of early investigators. In addition to improving the manner in which the 
surface boundary conditions are handled, it may be advisable to ignore the point at 
the center. A Taylor series expansion can be used to express the values of P2, T2, L2, 
and r2 in terms of the central temperature Tc and Pc. Because the system of equations 
is strongly diagonal, the solution is easier to come by if the central boundary 
conditions are expressed in this manner. 
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 The Henyey approach shown in equations (4.7.10) represents the derivative 
of the structure equations by first-order finite differences. Thus the errors of the 
approximation are second order in those derivatives. This necessitates the use of the 
large number of zones to accurately represent the model, and it is this large number 
of zones that represents the primary computational burden in the construction of the 
model. Although increasing the order of the finite difference equations would 
improve the stability, it would also increase the density (i.e., the number of terms) of 
the resulting linear algebraic equations, slowing their solution and decreasing their 
stability. Budge4 has shown that an improvement in the accuracy of the 
approximation can be achieved by using a Runge-Kutta fourth-order approximation 
for the derivatives without increasing the resulting linear equation density.  Although 
there is some increase in the computational burden for obtaining the coefficients, this 
is more than offset by being able to reduce the number of zones in the model. 
 
 We still must solve these linear equations. It is not uncommon in the standard 
Henyey scheme to choose up to 500 zones in the star, which will yield some 2000 
nonlinear equations in as many unknowns. Now it is clear why we need an initial 
solution. If we have a solution which is close to the correct one, we may express the 
correct solution in terms of the initial solution and a small linear correction to that 
solution. This will reduce the system of nonlinear equations to a linear system where 
the corrections are the unknowns. Such a scheme is known as a Newton-Raphson 
iteration scheme. Since the system is sparse (each equation contains only 8 of the 
2000 unknowns) and the independent variable was chosen so as to make the 
equations somewhat linear, the iteration scheme is usually stable. However, the 
stability also depends on the quality of the initial solution. This is normally obtained 
by means of a Schwarzschild-type integration or a previously determined model. 
 
 It is clear that the Henyey method lends itself naturally to the problem of 
stellar evolution. In this case the initial model is a model calculated for an earlier 
time. Thus the procedure would be to start at some initial time with a Schwarzschild 
model, allow a small interval of time for the model to pass by, calculate the changes 
in the chemical composition resulting from nuclear processes, and modify the model 
accordingly. This serves as the initial first guess for the Henyey scheme, and a new 
model is produced. The effects of time are again allowed for, and the next Henyey 
model is constructed, etc. In this way an entire sequence of stellar models 
representing the life history of the star can be constructed. One generally starts the 
sequence when the star is well represented by a steady-state model, and the 
Schwarzschild solution gives an accurate description of the stellar structure. Such a 
time is the arrival on the main sequence and the accompanying onset of hydrogen 
burning. The resulting life history of the star is as good as the microphysics which 
goes into the solution and the quality of the computer and the associated numerical 
techniques used to obtain the solution. 
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 At this point, we have covered the fundamentals required to construct a 
model of the interior of a star. However, we should not leave the impression that 
such a model would reflect the accuracy of contemporary stellar interior models. 
There are many complications and refinements which should be treated and included 
to produce a model with modern sophistication. We have said nothing about the 
small departures of the equation of state from the ideal-gas law which occur at quite 
modest densities due to electron screening. Nor have we dealt with many of the 
vagaries of the theory of convection, such as semi-convection, convective overshoot, 
or mixing-length determination. These result largely from the primitive nature of the 
existing theory of convection, and while they do pose significant problems at certain 
points in a star's evolution, they do not affect the conceptual picture of stellar 
structure. It seems almost criminal not to devote more attention to the efforts of those 
who have labored to provide improved opacities and nuclear energy generation rates. 
But again, while these improve the details of the models and enhance our confidence 
in the predictions based on them, they do not conceptually change the basic physics 
upon which the models rest. While we have outlined the numerical procedures 
necessary to actually solve the structure equations, there is much cleverness and 
imaginative numerical analysis required to translate what we outlined to a computer 
program which will execute to completion in an acceptable time. Do not forget that 
the early models of Schwarzschild and Harm were calculated basically by hand, 
aided only by a desk calculator whose capabilities are far exceeded by even the 
cheapest pocket calculator of the present. It is no accident that the rapid advance of 
our knowledge of stellar structure parallels the explosive advance in our ability to 
carry out numerical calculations.  
 
 An understanding of the refinements of contemporary models is essential for 
any who would choose to do meaningful research in stellar interiors. It is not 
essential for those who would understand the results and their physical motivation, 
and it is to those people that this book is addressed. With the knowledge of the 
physical processes that determine the structure of stars, let us now turn to the 
crowning achievement of the study of stellar structure - the theory of stellar 
evolution. 
 
Problems 
 

1. Assume that there is a star in which the energy is generated uniformly 
throughout the star (that is, ε = constant). In addition, the opacity is constant 
(i.e., electron scattering). Further assume that the star is in radiative and 
hydrostatic equilibrium. Show that 1-β is constant throughout the star and 
that it is a polytrope of index n = 3. 
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2. Suppose that in a star, the only source of energy generation is radioactive 
decay, so the energy production per unit mass is constant and independent of 
density and temperature. Further suppose that the opacity is given by 
Kramer’s' law. Show that the structure of the star is described by a polytrope, 
and find the value of the polytropic index n. 

 
3. Compare the local value of the radiative gradient with the adiabatic gradient 

throughout the sun. Describe the regions of radiative and convective 
equilibrium in light of your results. What would you expect to be the effect 
on the radiative and convective zones of replacing 50 percent of the solar 
luminosity with an energy generation source which was more efficient? 

 
4. For a sphere in radiative equilibrium and STE, show that the radiation 

pressure is one third the energy density. 
 
5. Since the convective temperature gradient differs systematically from the 

adiabatic gradient, it is possible that the cumulative effect is significant when 
it is integrated over the entire convective zone. Examine this effect in the sun 
and decide whether it is significant. 

 
6. Use a stellar interiors code or existing models to find the variation of the 
 fractional ionization of hydrogen and helium with depth in the sun. 

 
7. Use a stellar interiors code, or existing models to find the fraction by mass 

and radius within which (a) 20 percent, (b) 50 percent, (c) 90 percent, and   
(d)  99 percent of the sun's energy is generated.  

8. Repeat Problem 7 for a star of 10M⊙ . 
 
9. Repeat problem 7 but with Z = 10-8. 
 
10. Determine the relative importance of bound-bound transitions, bound-free 

 transitions, and electron scattering as opacity sources in the sun. 
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