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 One-half of the general problem of stellar atmospheres revolves around the 
solution of the equation of radiative transfer. Although equation (9.2.11) represents a 
very general formulation of radiative transfer, clearly the specific nature of the 
equation of transfer will depend on the geometry and physical environment of the 
medium through which the radiation flows. The nature of the physical medium will 
also influence the details of the source function so that the source function may 
depend on the radiation field itself. Thus, the mode of solution may be expected to be 
different for the different conditions that exist. However, the notion of plane 
parallelism is common to so many stars and other physical situations that we spend a 
significant amount of effort investigating the solution of the equation of transfer for 
plane-parallel atmospheres. 
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10.1   Classical Solution to the Equation of Radiative Transfer and 

Integral Equations for the Source Function 
 
  There are basically two schools of approach to the solution of the 
equation of transfer. One involves the solution of an integral equation for the source 
function, while the other deals directly with the differential equation of transfer. Both 
have their merits and drawbacks. Since both are widely used, we give examples of 
each. Both involve the classical solution, so that we begin the discussion with that 
solution. 
 
 a   Classical Solution of the Equation of Transfer for the Plane-

Parallel Atmosphere 
 
  The equation of transfer is a linear differential equation, which 
implies that a formal solution exists for the radiation field in terms of the source 
function. This linear property is a marked difference from the situation in stellar 
interiors where the structure equations were all highly nonlinear. Although under 
some conditions the solution [i.e., Iν(τν,µ)] itself is involved in the source function, 
this involvement is still linear. Let us consider a fairly general equation of radiative 
transfer for a plane-parallel atmosphere, but one where we may neglect time-
dependent effects and the presence of the potential gradient on the radiation field. 

                     (10.1.1) 
Since this equation is linear in Iν(τν,µ), we may write the complete solution as the 
sum of the solution to the homogeneous equation plus any particular solution. So let 
us choose as homogeneous and particular solutions  

         (10.1.2) 
Substitution into the equation of transfer places constraints on c1 and f'’(τν), namely 

                          (10.1.3) 
 While we have assumed that the geometry of the atmosphere is plane-
parallel, we have not yet specified the extent of the atmosphere. For the moment, let 
us assume that the atmosphere consists of a finite slab of thickness τ0 (see Figure 
10.1). The general classical solution for the plane-parallel slab is then 

                   (10.1.4) 
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Figure 10.1 shows the geometry for a plane-parallel slab. Note that there 
are inward (µ<0) and outward (µ>0) directed streams of radiation. The 
boundary conditions necessary for the solution are specified at τν = 0, and 
  τν = τ0 .   

 
 Since the equation of transfer is a first order linear equation, only one 
constant must be specified by the boundary conditions. However, even though the 
depth variable τν is the only independent variable that appears in a derivative, we 
must always remember that Iν(τν,µ) is a function of the angular variable µ. Thus in 
general, the constant of integration c2 will depend on the direction taken by the 
radiation. For radiation flowing outward in the atmosphere (that is, µ > 0), the 
constant c2 will be set equal to the radiation field at the base of the atmosphere [that 
is, Iν(µ, τ0)] and the integral will include the contribution from the source function 
from all depths ranging from τ0 to the point of interest τν. If we were concerned 
about radiation flowing into the atmosphere (that is, µ < 0), then the integral in 
equation (10.1.4) would cover the interval from 0 to τν and c2 would be chosen equal 
to the incident radiation field      [Iν(-µ,0)].  
 
 At this point we encounter one of the notational problems that often leads to 
confusion in understanding the literature in radiative transfer. For most problems in 
stellar atmospheres, there is a significant difference between the radiation field 
represented by the inward-directed streams of radiation and that represented by those 
flowing outward. In modeling the normal stellar atmosphere, there is no incident 
radiation present so that the incident intensity Iν(-µ,0) = 0. However, the outward-
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directed streams always result from a lower boundary condition which is nonzero. 
Thus it is useful to distinguish between the inward- and outward-directed streams in 
some notational way. We have already used a standard method of indicating this 
difference; namely, we explicitly labeled the inward-directed streams by -µ. Thus, 
we usually regard the angular variable m as an intrinsically positive quantity that is 
bounded by      0 < µ < 1. The sign of m must then be explicitly indicated, and we do 
this when we use this convention. Thus, to gain a physical understanding of the 
meaning of any solution for the radiation field, one must always keep in mind which 
streams of radiation are being considered. 
 
 The general classical solution for the two streams can then be written as  

 (10.1.5) 
While τν represents the vertical depth in the atmosphere increasing inward, τν/µ is 
the actual path along the direction taken by the radiation. In general, extinction by 
scattering or absorption will exponentially diminish the strength of the intensity by 

.  Since the source function represents the local source of photons from all 
processes, and since it is attenuated by the optical distance along the path of the 
radiation, the integrand of the integral represents the local contribution of the source 
function to the value of the intensity at τ

µτ/-e

ν. The remaining term simply represents the 
local contribution to the specific intensity of the attenuated incident radiation. 
 
 One further complication must be dealt with before we can use this 
description of a stellar atmosphere. In general, stellar atmospheres can be regarded as 
being infinitely thick. Since the influence of the lower boundary diminishes as e , 
and since this optical depth will exceed several hundred within a few thousand 
kilometers of the surface for main sequence stars, we can take it to be infinity. In 
addition, we should require the radiative flux to be finite everywhere. This will force 
the constant c

0-ττ

2 in equation (10.1.4) to vanish. Furthermore, the surface is generally 
unilluminated. So we can write the classical solution for the semi-infinite plane-
parallel atmosphere as 

                      (10.1.6) 
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b   Schwarzschild-Milne Integral Equations 
 
  One reason that the equation of transfer admits such a simple solution 
compared to the equations of stellar structure is that we have confined most of the 
difficult physics to the source function. What is left is largely geometry and hence 
affords a simple solution. However, the classical solution does allow for the 
generation of the entire radiation field should it be possible to specify the source 
function. It also allows us to remove the explicit structure of the radiation field and to 
generate an expression for the source function itself. The result is an integral 
equation, that is, an equation where the unknown appears under the integral sign as 
well as outside it. 
 
 While much attention has been paid to the solution of differential equations, 
far less has been given to integral equations. However, it is very often numerically 
more efficient and accurate to solve an integral equation as opposed to the 
corresponding differential equation. Therefore, we spend some time and effort with 
these integral equations, for they provide a very productive path toward the solution 
of problems in radiative transfer. 
 
 Integral Equation for the Source Function In Chapter 9 we showed that, for 
coherent isotropic scattering, we could write a quite general expression for the source 
function [equation (9.2.33)]. If we re-express that result in terms of the mean 
intensity, we get 

                        (10.1.7) 
where 

                                            (10.1.8) 
Now the role of the classical solution becomes evident. The source function contains 
the mean intensity Jν(τν), which can be generated from the classical solution that 
contains the source function itself. Thus, if we substitute the classical solution 
[equation (10.1.6)] into the definition for Jν(τν) [equation (9.3.2)], we get 

         (10.1.9) 
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 Now notice that the argument of the exponential is always negative and that 
the two integrals over t are contiguous. Thus, we can combine these integrals into a 
single integral that ranges from 0 to 4. In addition, t and µ are independent variables 
so that we may interchange the order of integration and get 

                     (10.1.10) 
The quantity in brackets is a well-known function in mathematical physics known as 
 the exponential integral. It depends only on the independent variables of the 
problem and therefore can be regarded as a largely geometric function. Its formal 
definition is  

        (10.1.11) 
and when expressed by the final integral, it has the same form as the integral in 
brackets in equation (10.1.10). While the exponential integral may not be terribly 
familiar, it should be regarded with no more fear and trepidation than sines and 
cosines. There is an entire set of these functions where each member is denoted by n, 
and they have a single argument, which for our purposes will be confined to the real 
line. These functions (except for the first exponential integral at the origin) are well 
behaved and resemble e-x/(nx) for large x. Some useful properties of exponential 
integrals are 

               (10.1.12) 
 Making use of the first exponential integral, we can rewrite our expression 
for the mean intensity [equation (10.1.10)] as  

                        (10.1.13) 
Combining this with equation (10.1.7) for the source function, we arrive at the 
desired integral equation for the source function: 
 

         (10.1.14) 
Any function that multiplies the unknown in the integrand of an integral equation is 
called the kernel of the integral equation. Thus, the first exponential integral is the 
kernel of the integral equation for the source function. The connection between the 
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physical state of the gas and the source function is contained in the term that makes 
the equation inhomogeneous, namely, the one involving the Planck function 
Bν[T(τν)]. A solution of this equation, when combined with the classical solution, 
will yield the full solution to the radiative transfer problem since Iν(µ, τν) will be 
specified for all values of µ and τν. 
 
 It is possible to understand equation (10.1.14) from a physical standpoint. 
Now ε(τν) is the fraction of locally generated photons that arise from thermal 
processes, so that the first term is simply the local contribution to the source function 
from thermal properties of the gas. The second term represents the contribution from 
scattering. We have already said that a fundamental aspect of stellar atmospheres is 
the dependence of the local radiation field on the global solution for the radiation 
field. Nowhere is this more clearly demonstrated than in this term. The scattering 
contribution to the source function is made up of contributions from the source 
function throughout the atmosphere. However, these contributions decline with 
increasing distance from the point of interest, and they decline roughly exponentially. 
 
 One may object that this integral equation is a very specialized equation since 
it relies on the source function's being expressible in terms of the mean intensity and 
therefore is valid only for isotropic scattering. However, consider the very general 
expression for the source function given by equation (9.2.27). As long as the angular 
dependence of the redistribution function is known, it will be possible to carry out 
the integrals over solid angle and express the source function as a combination of the 
moments of the radiation field. As long as this can be done, the appropriate moments 
can be generated from the classical solution for the equation of transfer which will, in 
turn, involve only the source function. Thus, the moments can be eliminated from the 
moment expression for the source function, yielding an integral equation. To be sure, 
this will be a more complicated integral equation, but it will still be solvable by the 
same techniques that we apply to equation (10.1.14). Thus, the existence of an 
integral equation for the source function is a quite general result and represents the 
separation of the depth dependence of the radiation field from the angular 
dependence, which can be obtained from the classical solution. 
 
 Integral Equations for Moments of the Radiation Field Useful as the 
integral equation for the source function is, it is often convenient to have similar 
expressions for the moments of the radiation field. We should not be surprised that 
such expressions exist since the angular moments are free, by definition, of the 
angular dependence characteristic of the classical solution. Indeed, we have already 
supplied the required expressions to obtain an integral equation for the mean 
intensity. We simply use equation (10.1.7) to eliminate Sν(t) from equation (10.1.13), 
and we have 
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                 (10.1.15) 
It is now clear how to develop similar expressions for the remaining moments, since 
equation (10.1.13) was obtained by taking moments of the classical solution to the 
equation of transfer. Let us define an operator which is commonly used to represent 
this process. 

          (10.1.16) 
 The Λn operator is an integral operator which operates on a function by 
employing an exponential integral kernel. The term in large parentheses simply 
denotes the sign of the kernel throughout the region. With this integral operator, we 
can express the first three moments of the radiation field in terms of the source 
function as follows: 

                            (10.1.17) 
Such equations are known as Schwarzschild-Milne type of equations and are 
extremely useful for the construction of model stellar atmospheres. For example, 
consider the condition of radiative equilibrium where it is necessary to know the 
radiative flux throughout the atmosphere, but not the complete radiation field. This 
information can be obtained directly with the aid of the flux equation of equations 
(10.1.17) and the source function. Thus, determination of the source function 
provides a complete solution of the radiative transfer problem.  
 
 c   Limb-darkening in a Stellar Atmosphere 
 
  There is one property of the classical solution of the equation of 
transfer that we should address before moving on. If we consider the classical 
solution for the emergent intensity, we see that it basically represents the Laplace 
transform of the source function, namely 

                      (10.1.18) 
where ℒ [S(t)] is the Laplace transform of the source function. Thus determination of 
the angular distribution of the emergent intensity is equivalent to determining the 
behavior of the source function with depth. Since the source function is determined 
by the temperature, determination of the depth dependence of the source function is 
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equivalent to determining the depth dependence of the temperature. This is of 
considerable significance for stars where this dependence can be measured directly 
for it provides a direct observational check on the models of those stellar 
atmospheres. 
 
 If we anticipate some later results and assume that the source function can be 
approximated by 

                                    (10.1.19) 
then  

                                  (10.1.20) 
Thus, the coefficient a that multiplies the angular parameter µ in the emergent 
intensity is a direct measure of the source function gradient, while the constant term 
b denotes the value of the source function at the boundary. The decrease in 
brightness as one approaches the limb of the apparent stellar disk implied by 
equation (10.1.20) is called limb-darkening. Since for spherical stars the variation 
across the apparent disk is the same as the local angular dependence of the emergent 
intensity, measurement of the limb-darkening coefficient a yields a measurement of 
the source function gradient. This is of particular interest for the sun where such 
measurements are possible. Unfortunately, the poorest theoretical representation of 
the model atmosphere occurs near the surface, and this corresponds to just that 
region of the stellar disk (i.e., near the limb where µ → 0) where confirmatory 
measurements are most difficult to make. Although we have made an approximation 
to the depth dependence of the source function in equation (10.1.19), the 
approximation is unnecessary and more rigorous studies of this depth dependence 
would deal directly with the Laplace transform itself as given by equation (10.1.18). 
We have now compiled methods by which we can theoretically relate the emergent 
intensity to the source function and provided a potential observational method to 
verify our result. However, before discussing methods for the solution for the 
integral equation for the source function [equation (10.1.14)] we consider the 
solutions to a somewhat simpler problem, in order to gain an appreciation for the 
behavior of these solutions. 
 
 Empirical Determination of  T(τν ) for the Sun  In the sun and some 
eclipsing binary stars, it is possible to determine the variation of the specific intensity 
across the apparent disk. If we approximate that variation by 

                                 (10.1.21) 
we can use equation (10.1.18) to obtain a power series representation of the source 
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function with optical depth. Let us further assume that the source function can be 
represented by the Planck function, which in turn can be expanded in a power series 
in the optical depth so that  

        (10.1.22) 
Then the substitution of this power series representation into equation (10.1.18) 
yields 

                             (10.1.23) 
Since for the sun, the ai's and Iν(0,1) may be determined from observation, the bi's 
may be regarded as known. Thus, the temperature variation with monochromatic 
optical depth may be recovered  from 

                     10.1.24) 
In the sun, the assumption that Sν(τν)= Bν(τν) is a particularly good one, so that for 
the sun the optical depth variation of the temperature can be determined with the 
same sort of accuracy that attends the determination of the limb-darkening. 
 
 
 
 Empirical Determination of  κ(τ1) / κ(τ2)  for the Sun This type of analysis 
can be continued under the above assumptions to obtain the variation with optical 
depth of the ratio of two monochromatic absorption coefficients. Since by definition 

                                    (10.1.25) 
the ratio of two monochromatic optical depths is 

                                    (10.1.26) 
Differentiating equation (10.1.22) with respect to temperature and substituting the 
result into equation (10.1.26), we get 

           (10.1.27) 
Thus it is possible to determine the approximate wavelength dependence of the 
opacity for stars like the sun from the observed limb-darkening. Such observations 
provide a valuable check on the theory of stellar atmospheres. 
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10.2   Gray Atmosphere 
 
 For the better part of this century, theoretical astrophysicists have been 
concerned with the solution to an idealized radiative transfer problem known as the 
gray atmosphere. Although it is an idealized situation, it has some counterparts in 
nature. In addition, this problem possesses the virtue that a complete solution can be 
obtained for the radiation field without recourse to the physical details of the 
atmosphere. In this regard, the gray atmosphere model is rather like polytropic 
models for stellar interiors. As was the case for polytropes and stellar interiors, we 
may expect to gain significant insight into the properties of stellar atmospheres by 
understanding the solution to the gray atmosphere problem. The additional 
assumption required to turn our study of radiative transfer into that of a gray 
atmosphere is simple. Assume that the opacity, whether it is absorption or scattering, 
is independent of frequency. Thus, any frequency can be treated as any other 
frequency, as far as the radiative transfer is concerned. This independence of the 
radiative transfer from frequency has the interesting consequence that the 
mathematical solution to the equation of transfer for any frequency will be the 
solution for all frequencies, and thus must be the solution for the sum of all 
frequencies. Hence, the aspect of the solution that specifies the radiative flux also 
refers to the total flux, making the condition of radiative equilibrium relatively 
simple to apply. Since all aspects of the mathematical description are independent of 
frequency, we drop the subscript n for the balance of this discussion. 
 
 Knowing what we do about the physical processes of absorption, it is 
reasonable to ask if the gray atmosphere is anything more than an interesting 
mathematical exercise. Certainly bound-bound transitions are anything but gray. 
However, there are some bound-free transitions that exhibit only weak frequency 
dependence over substantial regions of the spectrum. If those regions of the spectrum 
correspond to that part of the spectrum containing most of the radiant flux, then the 
atmosphere will be very similar to a gray atmosphere. Absorption due to the H-minus 
ion is relatively frequency-independent throughout the visible part of the spectrum 
and in some stars is the dominant source of opacity. However, the premier example 
of a gray opacity source is electron scattering. Thomson scattering by free electrons 
is frequency-independent by definition, and for stars hotter than about 25,000 K, it is 
the dominant source of opacity throughout the range of wavelengths encompassing 
the maximum flow of energy. Thus, the early O and B stars have atmospheres that, to 
a very high degree, may be regarded as gray. 
 
 Since frequency dependence has been removed from the problem, we may 
write the equation of radiative transfer for a plane-parallel static atmosphere as 
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                          (10.2.1) 
 
where, for isotropic coherent scattering, the source function is 
 

                                     (10.2.2) 
Now the independence of the opacity on frequency makes the condition of radiative 
equilibrium given by equation (9.4.4) particularly simple. 

                     (10.2.3) 
or simply 

                                             (10.2.4) 
Substitution of this result into equation (10.2.2) yields 

                              (10.2.5) 
The fact that the mean intensity is equal to the Planck function and that either can be 
taken to be the source function has the interesting result that the solution to the gray 
atmosphere is independent of the relative roles of scattering and absorption. Thus, 
the radiation field for a pure absorbing gray atmosphere, where the source function is 
clearly the Planck function, will be indistinguishable from the radiation field of a 
pure scattering gray atmosphere. In addition, since there is a general independence 
on frequency, the spectral energy distribution will be that resulting from a gray 
atmosphere where the source function is the Planck function. 
 
 The gray atmosphere implies that all the development of Chapters 9 and 10 
will apply at each frequency. This is indeed the easiest way to obtain equations 
(10.2.1) through (10.2.4). But there is much more. The integral equation for the 
source function [equation (10.1.14)] and that for the moments of the radiation field 
[equations (10.1.17)] become 

 (10.2.6) 
Solution of these equations, combined with the classical solution to the equation of 
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transfer, yields a complete description for the radiation field at all depths in the 
atmosphere. The method of solution for the gray atmosphere equation of transfer is 
also illustrative of the methods of solution for the more general nongray problem. 
 
 a   Solution of Schwarzschild-Milne Equations for the Gray   
  Atmosphere 

 
 In general, an accurate solution of these equations must be accomplished 
numerically because the solution, even for the gray atmosphere, is not analytic 
everywhere. Particular care must be taken with these equations because the first 
exponential integral behaves badly as its argument approaches zero. Specifically 
 

                          (10.2.7) 
Thus, the kernel of first two of equations (10.2.6) has a singularity when t = τ. 
However, this singularity is integrated over, and the integral is finite and well 
behaved. For years this singularity was regarded as an insurmountable barrier, and 
interest in the solution of the integral equations of radiative transfer languished in 
favor of more direct methods applicable to the differential equation of transfer itself. 
However, the singularity of the kernel is not an essential one and may be easily 
removed. Simply adding and subtracting the solution B(τ) from the right-hand side 
of the first of equations (10.2.6) yields 

(10.2.8) 
 
 The integrand of the first of these integrals is now well-behaved for all values 
of (t) since [B(t)-B(τ)] will go to zero faster than the exponential integral diverges as 
   t → τ. The only condition placed on the solution is that B(τ) satisfy a Lipschitz 
condition which is a weaker condition than requiring the solution to be continuous. 
The second integral is analytic and can be evaluated by using the properties of 
exponential integrals given in equations (10.1.12). This yields a slightly different 
integral equation, but one that has a well behaved integrand: 

                         (10.2.9) 
 
 A simple way to deal with this type of integral equation is to replace the 
integral with some standard numerical quadrature formula. While Simpson's rule 
enjoys a great popularity, a gaussian-type quadrature scheme offers much greater 
accuracy for the same number of points of evaluation of the integrand. When the 
integral is so replaced, we obtain 
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                      (10.2.10) 
which is a functional equation for B(τ) in terms of the solution at a discrete set of 
points ti. The quantities Wi are just the weights of the quadrature scheme appropriate 
for the various points ti. Evaluating the functional equation for B(τ) with τ equal to 
each value of tj, and rearranging terms, we can obtain a system of linear algebraic 
equations for the solution at the specific points ti: 
 

 (10.2.11) 
The term governed by the summation over i depends only on the type of quadrature 
scheme chosen, and so the equation (10.2.11) represents n linear homogeneous 
algebraic equations that have the standard form 

                (10.2.12) 
 

 The fact that these equations are homogeneous points out an observation 
made earlier. For the gray atmosphere, the radiation field is decoupled from the 
values of the physical state variables. Thus, the homogeneous equations constitute an 
eigenvalue problem, and, as we see later, the eigenvalue is the value of the total 
radiative flux or alternately the effective temperature. One approach to the solution 
of equations (10.2.12) would be to define a new set of variables B(ti) / B(t1)  say, and 
to generate a system of inhomogeneous equations that can then be solved for the 
ratio of the source function to its value at one of the given points. Once the source 
function (or its ratio) has been found at the discrete points ti, the solution can be 
obtained everywhere by substitution into equation 10.2.10. Since this is a functional 
equation, the results will have the same level of accuracy as that obtained for the 
values of B(ti). To achieve a level of accuracy significantly greater than that offered 
by the Eddington approximation, we will have to use a particularly accurate 
quadrature formula. Also the exponential nature of the exponential integral implies 
that the quadrature scheme should be chosen with great care. 
 
 b  Solutions for the Gray Atmosphere Utilizing the Eddington    
  Approximation 

 
 We have already seen that the diffusion approximation yields moment 
equations from the equation of transfer given by equation (9.4.11). For the gray 
atmosphere, these take the particularly simple form 
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                           (10.2.13) 
The first is a statement of radiative equilibrium which says that for a gray atmosphere 
Fν is constant, and its integrated value can be related to the effective temperature. 
The second equation is immediately integrable, yielding a constant of integration. 
Thus, 

         (10.2.14) 
Using the Eddington approximation as given by equation (9.4.13), we can evaluate 
the constant and arrive at the dependence of the mean intensity with depth in the 
atmosphere. 

                (10.2.15) 
Remembering that J = S = B for a gray atmosphere in radiative equilibrium, we find 
that the temperature of the atmosphere should vary as 

                            (10.2.16) 
 
 Thus, we see that at large depths, where we should expect the diffusion 
approximation to yield accurate results, the source function becomes linear with 
depth. Also, when τ = 2/3, the local temperature equals the effective temperature. 
So, in some real sense, we can consider the optical "surface" to be located at         
τ = 2/3. This is the depth from which the typical photon emerges from the 
atmosphere into the surrounding space. Only at depths less than 2/3 does the 
source function begin to depart significantly from linearity with depth. 
Unfortunately, this is the region in which most of the spectral lines that we see in 
stellar spectra are formed. Thus, we will have to pay special attention to that part 
of the atmosphere lying above optical depth 2/3. 
 
 We may check on the accuracy of the Eddington approximation by seeing 
how well it reproduces the surface boundary condition that it assumes. Using the 
definition for the mean intensity, the classical solution for the equation of transfer 
[equation (10.1.5)], and the fact that the source function is J itself, we obtain 
 

         (10.2.17) 
So the Eddington approximation fails to be self-consistent by about 1 part in 8 or 
12.5 percent in reproducing the surface value for the flux. To improve on this 
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result, we will have to take a rather more complicated approach to the radiative 
problem. 
 
 c Solution by Discrete Ordinates: Wick-Chandrasekhar Method 
 
 
  The following method for the solution of radiative transfer 
problems has been extensively developed by Chandrasekhar1 and we only briefly 
sketch it and its implications here. The method begins by noting that if one takes 
the source function to be the mean intensity J, then the equation of transfer can be 
written in terms of the specific intensity alone. However, the resulting equation is 
an integrodifferential equation. That is, the intensity, which is a function of the 
two variables µ and τ, appears differentiated with respect to one of them and is 
integrated over the other. Thus, 

               (10.2.18) 
Now, as we did in the integral equation for the source function, we can replace the 
integral by a quadrature summation so that 
 

                   (10.2.19) 

  Here the aj values are the weights of the quadrature scheme. This is a 
functional differential equation for I(τ,µ) in terms of the solution at certain discrete 
values of µi. Chandrasekhar1 is very explicit about using a gaussian quadrature 
scheme; a scheme that yields exact answers for polynomials of degree 2n - 1 or less 
utilizes the zeros of the Legendre polynomials of degree n as defined in the interval -
1 to +1. A more accurate procedure is to divide the integral in equation (10.2.18) into 
two integrals, one from -1 to 0 and the other from 0 to +1, and to approximate these 
integrals separately. The reason for this is that, since there is no incident radiation, 
the intensity develops a discontinuity in µ at τ = 0. Numerical quadrature schemes 
rely on the function to be integrated, in this case I(µ,τ), being well approximated by a 
polynomial throughout the range of the integral. Splitting the integral at the 
discontinuity allows the resulting integrals to be well approximated where the single 
integral cannot be. This procedure is sometimes called the double-gauss quadrature 
scheme. However, this “engineering detail” in no way affects the validity of the basic 
approach. 
 
 As we did with equation (10.2.10), we evaluate the functional equation of 
transfer [equation (10.2.19)] at the same values of µ as are used in the summation so 
that 
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                     (10.2.20) 
We now have a system of n homogeneous linear differential equations for the 
functions I(τ,µi). Each of these functions represents the specific intensity along a 
particular direction specified by the value of µi. Since the value µi=0 represents the 
point of discontinuity in I(µ,τ) at the surface, this value should be avoided. Thus, 
there will normally be as many negative values of µi as positive ones. To solve the 
problem, we must find n constants of integration for the n first-order differential 
equations. 
 
 Inspired by the general exponential attenuation of a beam of photons passing 
through a medium, let us assume a solution of the form 

                      (10.2.21) 
Substitution of this form into this set of linear differential equations (10.2.20), will 
satisfy the equations if 
 
 

       (10.2.22) 
and k satisfies the eigenvalue equation 

                  (10.2.23) 
Thus equation (10.2.22) provides a constant of integration for every distinct value 
of k. Since in all quadrature schemes the sum of the weights must equal the 
interval, k2 = 0 will satisfy equation (10.2.23). Thus, since equation (10.2.23) is 
essentially polynomic in form there will be n/2 - 1 distinct nonzero values of k2 
and thus n - 2 distinct nonzero values of k which we denote as ±kα. When these 
are combined with the value k = 0, we are still missing one constant of 
integration. Wick, inspired by the Eddington approximation, suggested a solution 
of the form 

                         (10.2.24) 
Substitution of this form into equations (10.2.20) also satisfies the equation of 
transfer provided that 

                               (10.2.25) 
The product constant bQ can be identified with the constant obtained from k2=0 so it 
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cannot be regarded as a new constant of integration; but the term bτ can be regarded 
as such and therefore completes the solution, so that 

(10.2.26) 
where 

                                        (10.2.27) 
and the values of µi range from -1 to +1. The constants L±α are the constants that 
result from equation (10.2.22) and the distinct values of kα. 
 
 Moments of the Radiation Field from Discrete Ordinates  We can generate 
the moments of the radiation field at a level of approximation which is consistent 
with the solution given by equation (10.2.26) by using the same quadrature scheme 
for the evaluation of the integrals over m that was used to replace the integral in the 
integrodifferential equation of radiative transfer. Thus, 

               (10.2.28) 

 We already have the values I (τ,µi) required to evaluate the resulting sums. 
For the gaussian quadrature schemes suggested, the ai's are symmetrically distributed 
in the interval -1 to +1, while the µi's are antisymmetrically distributed. Making use 
of these facts, substituting the solution [equation (10.2.26)] into equation (10.2.28), 
and manipulating, we get 

          (10.2.29) 
Following the same procedure for the flux, we get 

                                 (10.2.30) 
so that the constant b of the Wick solution is related to the constant flux. All that 
remains to complete the solution is to determine the constants L∀α from the boundary 
conditions. 
 
 Application of Boundary Values to the Discrete Solution    At no point in 
the derivation have we used of the fact that the atmosphere is assumed semi-infinite. 
So, in principle, the solution given by equation (10.2.26) is correct for finite slabs. 
Some applications of the approach have been used in the study of planetary 
atmospheres, and so for generality let us consider the application to an atmosphere 
which has a finite thickness τ0. For such an atmosphere, we must know the 
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distribution of the intensity entering the atmosphere at the base τ0 as well as that 
which is incident on the surface. Given that, it is a simple matter to equate the 
solution [equation (10.2.26)] to the boundary values, and we get 

(10.2.31) 

      These equations represent n equations in n unknowns. There are 2n-2 values 
of L±α's, F, and Q all specified by the n values of the boundary intensity. Here we 
explicitly incorporated the sign of µi into the equation so that all values of µi should 
be taken to be positive. Although the equations are effectively linear in the 
unknowns, note that the coefficients of those equations grow exponentially with 
optical depth. Indeed, since the nonzero values of kα are all greater than unity, that 
growth is quite rapid. In practice, it is virtually impossible to solve these equations 
for any value of τ0 > 100. Indeed, if the order of approximation is large, the practical 
upper limit is nearer 10. This instability is inherent in all discrete ordinate methods 
used for finite atmospheres. 
 
 The reason is fairly straightforward. Each of the kα's corresponds to a stream 
of radiation with a particular value of µi. The total optical path for this radiation 
stream is τ0/µi. Since the solution of equation (10.2.26) is essentially a linear two-
point boundary-value problem, the solution at one boundary is determined by the 
solution at the other boundary. If part of the solution at one boundary is optically 
remote from the other boundary, it will decouple from the solution, causing the 
solution to become singular or poorly determined. Physically, the photons from the 
remote boundary have been so randomized by scatterings or absorptions that all 
information pertaining to their direction of entrance into the atmosphere has been 
lost. In the case of the semi-infinite atmosphere, this has explicitly been taken into 
account, and the information from the lower boundary is contained in the finite and 
constant radiative flux.  
 
 We can see the effect of this constraint on the discrete solution by examining 
the behavior of the solution [equation (10.2.31)] as τ0 → 4. Since we require the 
radiation field to remain finite as τ0 → 4, the L-α's must go to zero. Thus, the 
influence of the deep radiation field explicitly disappears from the solution, and the 
radiative flux becomes the eigenvalue of the problem. So the complete solution for 
the semi-infinite gray atmosphere for the method of discrete ordinates is 
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        (10.2.32) 
Table 10.1 contains some values of L+α, kα, and Q for various orders of 
approximation for the semi-infinite gray atmosphere for the single-gauss quadrature 
scheme. By analogy to the Eddington approximation, the source function is 
sometimes written as  

                             (10.2.33) 
 
where 

                          (10.2.34) 
is known as the Hopf function. It is clear that for the Eddington approximation the 
appropriate Hopf function would be q(τ) = 2/3. The Eddington approximation also 
avoids the problem of the solution's becoming unstable with increasing depth, by the 
use of the diffusion approximation, which basically assumes that the radiation field 
has been directionally randomized. 
 
 Nonconservative Gray Atmospheres   The notion of a nonconservative gray 

atmosphere may sound like a contradiction in terms, and if it were meant to apply to 
all frequencies, it would be. However, consider the case where the opacity is 
essentially gray over the part of the spectrum containing most of the emergent 
radiation, but radiative equilibrium does not apply because some energy is lost from 
the radiation field to perhaps convection. Or consider an atmosphere where the 
dominant opacity source is the scattering of light from a hot external source, but the 
atmosphere itself is so cold that the thermal emission can be neglected. Planetary 
atmospheres often fit into this category. 
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 Under these conditions, the equation of transfer becomes 

           (10.2.35) 
which, by the same methods used to generate equation (10.2.23), yields the 
eigenvalue equation 

                 (10.2.36) 
Here p is the scattering albedo, or the fraction of interacting photons that are 
scattered. Since p < 1 for a nonconservative atmosphere, there will now be n distinct 
kα's and n distinct L±α's, so that the n values of the boundary radiation field 
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completely specify the solution. The L∀α’s are specified by the boundary equations 
 

            (10.2.37) 
and the source function for the atmosphere is given by 
 

               (10.2.38) 
 
 We need not consider the unilluminated semi-infinite atmosphere since all 
radiation moving up through a nonconservative semi-infinite atmosphere will 
eventually be lost before it emerges. Thus, only the finite slab or an illuminated semi-
infinite nonconservative atmosphere will yield anything other than the trivial 
solution. 
 
10.3   Nongray Radiative Transfer 
 
While the elimination of the assumption of a gray opacity removes the easy 
incorporation of radiative equilibrium into the solution of the equation of radiative 
transfer, most methods described in Section 10.2 can be used for the nongray case. In 
spite of the diversity of methods available to the researcher for the solution of 
radiative transfer problems (there are more than are described here), most practical 
approaches can be divided into two categories: the solution of the integral equation 
for the source function and methods based on the solution of the differential 
equations for the radiation field. The solution of the integral equation for the source 
function is highly efficient, since no more information is generated than is necessary 
for the solution of the problem, and has also proved effective in dealing with 
problems of polarization, where complex redistribution functions are required (see 
Chapter 16). The differential equation approach is perhaps more widely used because 
a highly efficient algorithm has been developed which enables the investigator to 
utilize existing and proven mathematical packages for much of the numerical work. 
In addition, the differential equation approach has proved effective where geometries 
other than plane-parallel ones are required, and lends itself naturally to the 
incorporation of time-dependent and hydrodynamic terms when they may be needed. 
Of the myriads of specific applications, we will be concerned with only two. 
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 a   Solutions of the Nongray Integral Equation for the Source     
  Function 

 
  We derived the integral equation for the nongray source function in 
Section 10.1 [equation (10.1.14)]. The approach we take is basically that described 
for the solution of the Schwarzschild-Milne equations in Section 10.2. Replacing the 
integral in equation (10.1.14) with a suitable quadrature scheme, after removing the 
singularity of the first exponential integral as described in equation (10.2.8), we get 

(10.3.1) 
This functional equation, evaluated at the points of the quadrature, yields a set of 
linear algebraic equations for the source function at the quadrature points. These, in 
turn, can be put into standard form so that 

 (10.3.2) 
 
 These equations are strongly diagonal since the dominant contribution to the 
source function is always the local one. That contribution is measured by the last 
term in equation (10.3.1), and it represents the addition made to the equation to 
compensate for the removal of the local contribution within the integral. The strongly 
diagonal nature of the equations ensures that the solution is numerically stable. 
Indeed, when     Sν = Bν and εν = 1, the equations are formally diagonal. Thus, in 
practice they may be solved rapidly by means of the Gauss-Seidel iteration with  
Sν(ti) = Bν(ti) as the initial guess. We remarked earlier that some care should be taken 
in choosing the quadrature scheme. It is a good practice to split the integral into two 
parts, with the first ranging from 0 to 1 and the second from 1 to 4. A 10-point 
Gauss-Legendre quadrature provides sufficient accuracy for the rapid change of the 
source function near the surface, while a 4-point Gauss-Laguerre quadrature scheme 
is adequate for the second as the source function approaches linearity. 
 
 A slightly different approach is taken by the Harvard group2 in the widely 
used atmosphere program called ATLAS. They also solve the integral equation for 
the source function, but they deal with the singularity of the exponential integral in a 
somewhat different fashion. Instead of formally removing the singularity, they 
approximate the source function with cubic splines over a small interval. With an 
analytic form for the source function, it is possible to evaluate the integral, resulting 
in a multiplicative weight for the coefficients of the splines. This results in a series of 
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weights which are numerically very similar to those present in equation (10.3.2). 
Again, a set of linear algebraic equations is produced for the source function at a 
discrete set of optical depths. The results of the two methods are nearly identical, 
with the gaussian quadrature scheme being somewhat more efficient. 
 
 b   Differential Equation Approach: The Feautrier Method 
 
  This method replaces the differential equations of radiative transfer 
with a set of finite difference equations for parameters related to the specific intensity 
at a discrete set of values for the angular variable mi. However, the choice of values 
of mi is irrelevant to understanding the method, so we leave that choice arbitrary for 
the moment. Instead of solving the equation of transfer for the specific intensity, we 
write equations of transfer for combinations of inward- and outward-directed 
streams. 
 
 Feautrier Equations   Consider the variables 

      (10.3.3) 
Here we have paired the outward directed stream I(+µ,τ) with its inward -directed 
counterpart I(-µ,τ) into quantities that resemble a "mean" intensity u and a "flux" v. 
One of the benefits of the linearity of the equation of transfer is that we can add or 
subtract such equations and still get a linear equation. Thus, by adding an equation 
for a +µ stream to one for a -µ stream we get 

                              (10.3.4) 
Similarly, by subtracting one from the other, we get 

                               (10.3.5) 
Using this result to eliminate v from equation (10.3.4), we have 
 

                           (10.3.6) 
 
 This is a second-order linear differential equation, so we will need two 
constraints or constants of integration. At the surface I(-µ,0) = 0, so v(0) = u(0), and 
from equation (10.3.5) we have 

                                    (10.3.7) 
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The other constraint on the differential equation comes from invoking the diffusion 
approximation at large depths. Under this assumption 

                                     (10.3.8) 
We may now use the equation of transfer itself to generate a perturbation expression 
for I(µ,τν) at large depths: 

 (10.3.9) 
Substituting the left-hand side into the definition for v we get 
 

                 (10.3.10) 
Equations (10.3.7) and (10.3.10) are the two constraints needed to specify the 
solution. Now consider the finite difference approximations required to solve 
equation (10.3.6) subject to these constraints. 
 
 Solution of the Feautrier Equations We saw earlier, in Chapter 4, how the 
method of solution used to solve the Schwarzschild equations of stellar structure was 
supplanted by the Henyey method utilizing finite differences. Many of the reasons 
that lead to the superiority of the Henyey method are applicable to the Feautrier 
method for solution of the equations of radiative transfer. It is for that reason that we 
describe the numerical method in some detail. 
 
 First, we must pick a set of τk's for which we desire the solution. We must be 
certain that the largest τN is deep enough in the atmosphere to ensure that the 
assumptions resulting in the boundary condition given in equation (10.3.9) are met. 
In addition, it is useful if the density of points near the surface is large enough that 
the solution will be accurately described. This is particularly important when we are 
dealing with the transport of radiation within a spectral line. Now we define the 
following finite difference operators: 
  

                    (10.3.11) 
The subscript k+½ simply means that this is an estimate of the parameter appropriate 

 277



II ⋅ Stellar Atmospheres 
 

 

for the value of τ midway between k and k + 1. Unlike the Henyey scheme, where 
this information was obtained from an earlier model structure, the Feautrier method 
obtains the information by linear interpolation from the existing solution. Now we 
replace the derivatives with the following finite difference operators: 

 (10.3.12) 
The second derivative in equation (10.3.6) can now be replaced by these operators 
operating on u(µ) to yield the following linear algebraic equations for u(µ) at the 
chosen optical depth points τk : 

                              

(10.3.13) 
 
 Now it is time to pick those values of µ for which we desire the solution. Let 
u be considered a vector whose elements are the values of u at the particular values 
of µi, so that 

                    (10.3.14) 
The linear equations (10.3.13) can now be written as a system of matrix-vector 
equations of the form 

          (10.3.15) 
The elements of matrices A, B, and C involve only the values of µi and τk that were 
chosen to describe the solution. The constraints given by equations (10.3.7) and 
(10.3.9) require that 

                       (10.3.16) 
 
 Thus we have set the conditions required to solve the equations for uk(µi) 
from which the specific intensity can be recovered and all the moments that depend 
on it. Equations (10.3.16) happen to be tridiagonal, which ensures that they can be 
solved efficiently and accurately. We have glossed over the source function Sk in our 
discussion by assuming that it is known everywhere and depends only on τk. 
However, the property of the source function that caused so many problems for 
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earlier methods (and, indeed, resulted in the integral equations in the first place) is 
that the source function usually depends on the intensity itself. However, for 
scattering, the source function does depend on the intensity in a linear manner. 
Therefore, it is possible to represent the source function in terms of the unknowns uk 
and vk and include them in the equations, still preserving their tridiagonal form.  
 
 There is one caveat to this. The Feautrier method imposes a certain symmetry 
on the solution to the radiative transfer problem by combining inward- and outward-
directed streams. If the redistribution function does not share this symmetry, it will 
not be possible to represent the scattering in terms of the functions u(µ) and v(µ). 
Thus, for some problems involving anisotropic scattering, the Feautrier method may 
not be applicable. In addition, when the redistribution function involves 
redistribution in frequency, the optical depth points must be chosen so that the 
deepest point will satisfy the assumptions required for the approximation given in 
equation (10.3.9) for all frequencies. If this is not done, errors incurred at those 
frequencies for which the assumptions fail can propagate in an insidious manner 
throughout the entire solution. 
 
 The Feautrier method does not suffer from the exponential instabilities 
described for the discrete ordinate method, because it invokes the diffusion 
approximation at large depths (specifically the inner boundary). The diffusion 
approximation basically contains the information that the radiation field has been 
randomized in direction and thereby stabilizes the solution in the same manner as it 
stabilizes the Eddington solution. As we see in Chapter 11, knowledge of the mean 
intensity, the radiative flux, and occasionally the radiation pressure is usually 
sufficient to calculate the structure of the atmosphere. The Feautrier method finds 
more information than that and therefore is not as efficient as it might be. However, 
the numerical methods for solving the resulting linear equations are so fast that the 
overall efficiency of the method is quite good, and it provides an excellent method of 
solution for most problems of radiative transfer in stellar atmospheres. Remember 
that, like any numerical method, the Feautrier method should be used with great care 
and only on those problems for which it is suited. 
 
10.4   Radiative Transport in a Spherical Atmosphere 
 
 Any discussion of the solution of radiative transfer problems would be 
incomplete without some mention of the problem introduced by a departure from the 
simplifying assumption of plane-parallel geometry. In addition, there are stars for 
which the plane-parallel approximation is inappropriate, and we would like to model 
these stars as well as the main sequence stars for which the plane-parallel 
approximation is generally adequate. The density in the outer regions of red 
supergiants is so low that the atmosphere will occupy the outer 30 percent to 40 
percent of what we would like to call the radius of the star. Here, the plane-parallel 
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assumption is clearly inappropriate for describing the star. We must include the 
curvature of the star in any description of its atmosphere. In doing so, we will require 
a parameter that was removed by the plane-parallel assumption - the stellar radius. 
This parameter can be operationally defined as the distance from the center to some 
point where the radial optical depth to the surface is some specified number (say 
unity). In doing so, we must remember that the radius may now become a 
wavelength-dependent number and so some mean value from which the majority of 
the energy escapes to the surrounding space may be appropriate for describing the 
star when a single value for the radius is required. However, for the calculation of the 
stellar interior, we need to know only the surface structure at a given distance from 
the center in order to specify the interior structure. Whether the distance corresponds 
to our idea of a stellar radius is irrelevant. In addition, we assume that the star is 
spherically symmetric. 
 
 a   Equation of Radiative Transport in Spherical Coordinates 
 
  In Chapter 9 we developed a very general equation of radiative 
transfer which was coordinate-independent [equation (9.2.11)]. Writing the time-
independent form for which the gravity gradient does not significantly affect the 
photon energy, we get 

                           (10.4.1) 
Writing the ∇ operator in spherical coordinates and making the usual definition for m 
(see Figure 10.2), we get 
 

  (10.4.2) 
where we take the source function to be that of a nongray atmosphere with coherent 
isotropic scattering, so that 

                            (10.4.3) 
Our approach to the solution of the equation of transfer will be to obtain and solve 
some equations for the important moments of the radiation field.  
 
 Radiative Equilibrium and Moments of the Radiation Field  For a steady 
state atmosphere, our condition for radiative equilibrium [equation (9.4.4)] becomes 

            (10.4.4) 
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condition that we obtained for stellar interiors [equation (4.2.1)]: 

                           (10.4.5) 
Now the condition of radiative equilibrium is obtained from the zeroth moment of 
the equation of transfer [equation (9.4.3)], while the first moment of the equation of 
transfer [equation (9.4.6)] yields an expression for the radiation pressure tensor. For 
an atmosphere with no time-dependent processes, these moment equations become 

          (10.4.6) 
Noting that there is no net flow of radiation in either the θ or φ coordinates for a 
spherically symmetric atmosphere, we see that the divergence of the flux in spherical 
coordinates becomes 

 

                            (10.4.7) 
If we make the assumption that the radiation field is nearly isotropic, then ∇⋅Kν 
becomes ∇Kν where Kν is the scalar moment that we have identified with the 
radiation pressure [see equations (9.3.14) through (9.3.16)]. Perhaps the easiest way 
to find the representation of equation (10.4.6) in spherical coordinates is to multiply 
equation (10.4.2) by m and integrate over all m. This yields the second of the 
required moment equations, 

                     (10.4.8) 
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 Figure 10.2 shows the geometry assumed for the Spherical Equations 
of radiative transfer. The angle θ for which µ = cosθ is defined with 
respect to the radius vector. Unlike the plane-parallel approximation 
the depth variable is the radius and increases outward. 

 
 Closing the Moment Equations and the Eddington Factor  In Chapter 9 we 
observed [equation (9.4.8)] that under conditions of near isotropy Kν = Jν/3. This was 
the moment approximation needed to close the moment equations, and it is known as 
the diffusion approximation. However, such conditions do not prevail throughout the 
atmosphere, so it is common to assume that the two moments can be related by a 
scale factor, which has come to be known as the Eddington factor, defined as 

                                        (10.4.9) 
We can replace the radiation pressure by the Eddington factor and obtain 
 

               (10.4.10) 
for the second moment equation.  
 
 Equation (10.4.10) combined with equation (10.4.7) form a complete system 
for Fν and Jν subject to the appropriate boundary conditions. Of course, we have not 
fundamentally changed the problem since the Eddington factor is unknown and 
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presumably a function of depth. It must be found so that any atmosphere produced is 
self-consistent under the constraint of radiative equilibrium. The Eddington factor 
basically measures the isotropy of the radiation field, since for isotropic radiation it is 
1/3. Imagine a radiation field entirely directed along µ = ±1. For such a field fν = 1, 
while for a radiation field confined to a plane that is normal to this direction, fν = 0. If 
we consider the normal radiation field emerging from a star, the temperature gradient 
normally produces limb-darkening, implying that the radiation field near the surface 
becomes more strongly directed along the normal to the atmosphere. Thus, we 
should expect the Eddington factor to increase as the surface approaches. This effect 
should be enhanced for stars with large spherical atmospheres. Thus, for normal 
stellar atmospheres 

                                   (10.4.11) 
 
 b   An Approach to Solution of the Spherical Radiative Transfer  

  Problem 
 
 Sphericality Factor  This factor is introduced purely for mathematical 
convenience and as such has no major physical importance. However, it does tend to 
make the spherical moment equations resemble their plane-parallel counterparts. We 
define 

                    (10.4.12) 
so that 

                     (10.4.13) 
The parameter rc is the deepest radius for which the problem is to be solved. Given 
Fν, we can find the sphericality factor qν by numerically integrating equation 
(10.4.12). Using this definition of qν, we may rewrite the second moment equation 
(10.4.10), as 

                    (10.4.14) 
This form is suitable for combining with the first moment equation (10.4.7), to 
eliminate Fν and get 

                          (10.4.15) 
where 
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                              (10.4.16) 
and εν has the same meaning as before [see equation (10.1.8)].  We have now 
generated a second order differential equation for Jν that is similar to the one 
obtained for the Feautrier method, and we solve it in a similar manner. 
 
 Boundary Conditions    The boundary conditions are determined in 
much the same manner as for the Feautrier method. For the lower boundary we make 
the same assumptions of isotropy as were made for equation (10.3.9). Indeed, we 
multiply equation (10.3.9) by µ and integrate over all µ, to get  

              (10.4.17) 
   This and equation (10.4.14) allow us to specify the derivative of Jν at the lower 
boundary as 

                       (10.4.18) 
Again rc is the deepest point for which the solution is desired. Equation (10.4.14) also 
sets the upper boundary condition at R as 

          (10.4.19) 
so that we again have a two-point boundary-value problem and a second-order 
differential equation for Jν which we can solve by the same finite difference 
techniques that were used for the Feautrier method [see equations (10.3.11) through 
(10.3.16)]. 
 
 The problem can now be solved, assuming we know the behavior of the 
Eddington factor with depth in the atmosphere. Unfortunately, to find this, we must 
know the angular distribution of the radiation field at all depths. Normally, we could 
appeal to the classical solution, for knowledge of Jν would provide all the 
information needed to calculate the source function. But the classical solution was 
appropriate for only the plane-parallel approximation. To find the analog for 
spherical coordinates, we have to use the symmetry of a spherical atmosphere and 
perform still another coordinate transformation. 
 
 Impact Space and Formal Solution for the Spherical Equation of Radiative 
Transfer         Consider a coordinate frame attached to the star so that the z axis 
points in the direction of the observer and passes through the center of the star (see 
Figure 10.3). Coordinates z and p designate all places within the star with p playing 
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the role of an impact parameter for photons directed toward the observer parallel to z. 
The entire solution set I(µ,r) can be represented by the radiation streams I+(p,z), and 
I-(p,z) by moving along surfaces of constant r.  

 
 

 Figure 10.3 describes 'impact space' for spherical transport. The z-
axis points at the observer, while the p -coordinate is perpendicular 
to z and plays the role of an impact parameter for the photons 
directed toward the observer. The angle α denotes the angle 
between a line parallel to z, directed toward the observer, and a 
radius vector. 

 
Thus any solution that gives us a complete representation of the specific intensity in 
the p-z plane will give a complete description of the radiation field. We can 
immediately write the equation of transfer for the special beams directed toward or 
away from the observer as 

            (10.4.20) 
where the coordinate transformation from p-z coordinates to µ-r coordinates is 

             (10.4.21) 
For simplicity we denote 
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                                 (10.4.22) 
 Equation (10.4.20) is a linear first order equation that has a classical solution 
of 

 (10.4.23) 
While this is a complicated expression, it can be evaluated numerically as long as 
one has a representation of the source function. Thus, it is now possible to solve for 
the entire radiation field and recalculate the variable Eddington factor fν. Equation 
(10.4.15) is then solved again for a new value of Jν and hence Sν. The entire 
procedure is repeated until a self-consistent solution is found. Rather than carry out 
the admittedly messy numerical integration, Mihalas3 describes a Feautrier-like 
method to calculate the intensities directly.  
 
 A method proposed by Schmid-Burgk4 assumes that the source function can 
be locally represented by a polynomial in the optical depth. This analytic function is 
then substituted into the formal solution in impact space so that the radiation field 
can be represented in terms of the undetermined coefficients of the source function's 
approximating polynomials. The moments of the radiation field can then be 
generated which depend only on these same coefficients. Thus, if one starts with an 
initial atmospheric structure and a guess for the source function, one can fit that 
source function to the local polynomial and thereby determine the approximating 
coefficients. These, in turn, can be used to generate the moments of the radiation 
field upon which an improved version of the source function rests. An excellent 
initial guess for the source function is Sν = Bν, and unless scattering completely 
dominates the opacity, the iteration process converges very rapidly. 
 
 It is clear that the spherical atmosphere poses significant difficulties over and 
above those found in the plane-parallel atmosphere. However, there are very few 
differences that are fundamental in nature. All present methods rely on the global 
symmetry of spherical stars, and it seems likely that those stars with atmospheres 
sufficiently extended to require the spherical treatment will also be subject to other 
forces, such as rotation, that further distort the atmospheres so that even this global 
symmetry is lost. However, such studies can offer insight into the severity of the 
effects that we can expect from the geometry. 
 
 We have only skimmed the surface of the methods and techniques devised to 
solve the equation of radiative transfer. The methods discussed merely comprise 
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some of the more popular and successful methods currently in use. We have left to 
the studious reader the entire area of the "exact approximation" and the H-functions 
of Chandrasekhar1 (pp. 105 to 126). No mention has been made of invariant 
embedding and the voluminous literature written for Linear two-point boundary-
value problems. Many of these techniques have proved useful in solving specific 
radiative transfer problems, and those who would count themselves experts in this 
area should avail themselves of that literature. There is an entire field of study 
surrounding the transfer of radiation within spectral lines, some of which will be 
discussed later, but much of which will not be. This material is important for anyone 
interested in problems requiring line-transfer solutions. However, the methods 
presented here suffice for providing the solution to half of the task of constructing a 
normal stellar atmosphere, and next we turn to the solution of the other half of the 
problem. 
 
Problems 
 

1. Find the general expression for 

 
2. Find the eigenvalues kα and L+α for the discrete ordinate solution to the semi-

infinite plane-parallel gray atmosphere for n = 8. 
 

3. Repeat Problem 2 for the double-gauss quadrature scheme for n = 8. 
 

4. If there is an arbitrary iterative function Φ(x) such that 

 
 then an iterative sequence defined by Φ(xk) will converge to a fixed point x0 

if and only if 

 
 Use this theorem to prove that any fixed-point iteration scheme will provide a 

solution for 

 
5. Find a general interpolative scheme for I(τ,µ) when µ < 0 for the discrete 

ordinate approximation. The interpolative formula should have the same 
degree of precision as the quadrature scheme used in the discrete ordinate 
solution. 
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6. Consider a pure scattering plane-parallel gray atmosphere of optical depth t0, 

illuminated from below by I(τ0,+µ) = I0. Further assume that the surface is not 
illuminated [that is, I(0,-µ) = 0. Use the Eddington approximation to find F(τ), 
J(τ), and I(0,+µ) in terms of  I0 and τ0. 

 
7. Show that in a gray atmosphere 

 
8. Use the first of the Schwarzschild-Milne integral equations for the source 

function in a gray atmosphere [equation (10.2.6)] to derive an integral 
equation for the Hopf function q(τ). 

 
9. Show that no self-consistent solution to the equation of radiative transfer 

exists for a pure absorbing plane-parallel gray atmosphere in radiative 
equilibrium where the source function has the form 

 
10. Show that the equation of transfer in spherical coordinates 

 
 transforms to 

 
 in impact space where r2 = (p2+z2), and │µ │ = z/r. 
 

11. Derive an integral equation for the mean intensity Jν(τν) when the source 
function is given by 

 
12. Numerically obtain a solution for the Schwarzschild-Milne integral equation 

for the source function in a gray atmosphere by solving equation (10.2.11) for 
the ratio of the source function at eight points in the atmosphere to its value at 
one point. Describe why you picked the points as you did, and compare your 
result with that obtained from the Eddington approximation. 

 
13. Using equation (10.2.21), show that equations (10.2.22) and (10.2.23) follow 

from the discrete ordinate equation of transfer [equation (10.2.20)]. 
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14. Show that equations (10.2.29) and (10.2.30) follow from the substitution of 

the solution for the discrete ordinate method [equation (10.2.26)] into the 
definition for the moments of the radiation field, J(τ), and F. 

 
15. Show that equation (10.2.36) is indeed the eigen-equation for the 

nonconservative gray atmosphere. 
 
16. Use the Feautrier method to solve the problem of radiative transfer in a gray 

atmosphere. 
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Virtually every book about stellar atmospheres provides an introduction to the 
subject that is worth perusing. Some are more valuable than others in providing 
insight into the physics of the atmosphere. In the area of radiative transfer, the 
definitive mathematical treatise is still 

 
 Chandrasekhar, S.: Radiative Transfer, Dover, New York 1960.  

 
However, students should not try to read this work until they have gained 
considerable familiarity with the problem. One of the clearest and most 
comprehensive descriptions of the gray atmosphere and various methods of solution 
of the radiative transfer problem is found in 

 
 Kourganoff, V.: Basic Methods in Transfer Problems - Radiative 
Equilibrium  and Neutron Diffusion,  Dover, New York, 1963, pp.86 - 125. 

 
An extremely complete discussion of  Λ-operators is given in this same reference     
(pp. 40 - 85). Dimitri Mihalas provides a good description of the gray atmosphere in 
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both editions of his book on stellar atmospheres, but of the two, I prefer the first 
edition; 
 

 Mihalas, D.:Stellar Atmospheres, 1st ed., W.H.Freeman, San Francisco, 
1970,  pp.34 -66. 

 
 For a lucid discussion of the relative merits of solutions to the integral 
equations of radiative transfer, see 
 

          Kalkofen, W. A Comparison of Differential and Integral Equations of             
        Radiative Transfer,  J. Quant. Spectrosc. & Rad. Trans. 14, 1974,  
         pp. 309 - 316. 

 
For a general background of the subject as considered by some of the finest minds of 
the twentieth century, everyone should spend some time eading Selected Papers on 
the Transfer of Radiation, edited by D. H. Menzel (Dover, New York, 1966). All 
these papers are of landmark quality, but I found this one to be most rewarding and 
somewhat humbling: 
 

Schuster, A.:Radiation through a Foggy Atmosphere, Ap.J. 21, 1905 pp.1 - 22, 
 
It is clear that Arthur Schuster identified and understood most of the important 
aspects of scattering theory in radiative transfer without the benefit of the work of the 
rest of the twentieth century that is available to the contemporary student of physics. 
Much of the work on neutron diffusion theory deals with the same mathematical 
formalisms that serve radiative transfer theory, and we should be ever mindful of the 
physics literature on that subject if we are to appreciate the full breadth of the nature 
of the problems posed by the flow of radiation through the outer layers of stars. 
Finally, it would be a mistake to ignore the substantial contribution from the Russian 
school of radiative transfer theory. Perhaps the finest example of their efforts can be 
found in 
 
 Sobolev, V. V.:A Treatise on Radiative Transfer,(Trans. S. I. Gaposchkin), Van 
Nostrand, Princeton, N.J., 1963. 
 
The approaches described in this book are insightful, novel, and particularly useful in 
dealing with some of the more advanced problems of radiative transfer. 
 


