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12.1   Statement of the Basic Problem 
 
We have now acquired all the material necessary to construct a model of the 
atmosphere of a star. This material includes not only the dependence of the state 
variables P, T and ρ with depth in the atmosphere but also an approximation to the 
emergent spectrum. That predicted spectrum will not contain the details of the stellar 
absorption lines, but will show the departures from the Planck function of a radiation 
field in thermodynamic equilibrium. The major departures are caused by the 
absorption edges corresponding to the ionization limits for the elements included in 
the calculation. Even if there were no such discontinuities in the frequency 
dependence of the absorption coefficient, the emergent spectra would still differ from 
those of a blackbody. Since the photons emerge from different depths in the 
atmosphere, having different temperatures, even a gray atmosphere spectrum will 
depart from the Planck function. The more sophisticated spectrum results from the 
solution of the equation of radiative transfer, the calculation of which represents a 
major part of the construction of a model atmosphere.  
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 In developing this material, we have used the same conservation laws that 
yielded the equations of structure for the stellar interior. However, the resulting 
formulation is somewhat different. The conservation of momentum yielded the 
expression for hydrostatic equilibrium, as it did in the stellar interior. However, the 
assumption of a plane-parallel structure for the atmosphere and the use of a different 
depth coordinate have caused the expression of hydrostatic equilibrium to take a 
somewhat different form than for the stellar interior. The conservation of energy is at 
the root of radiative equilibrium. This condition is imposed on the Boltzmann 
transport equation itself which was used to produce the equation of radiative transfer. 
However, because of the departure of the radiation field from STE, the flow of 
radiation was described by an integral equation, implying that the solution at any 
point depends on the solution at all points. As a result, we no longer have the simple 
differential equation for the radiative gradient that was appropriate for the stellar 
interior. Even the equation of state, which results from saying that the local velocity 
field of the particles is largely isotropic and dominates any macroscopic flow 
velocity, is present in basically the form used in the stellar interior. Although the 
calculation of the mass absorption coefficient appears to present a greater problem 
for stellar atmospheres, this is largely an illusion. The construction of an accurate 
model interior requires careful calculation of the frequency-dependent absorption 
coefficient, and the range of atomic phenomena that must be included is actually 
greater than that of an atmosphere because of the greater range of possible ionization 
states. However, in the stellar atmosphere, the frequency dependence of the 
absorption coefficient enters far more directly into the solution and plays a greater 
role. The use of the Rosseland Mean opacity for stellar interiors tends to average out 
the "mistakes" in the opacity calculations whereas those mistakes in a stellar 
atmosphere are directly visible in the emergent spectrum. The presence of molecules 
is an added complication for the theory of stellar atmospheres that does not plague 
the theory of stellar interiors. 
 
 Much has been concealed by writing the opacity as a function of the state 
variables. But while the details are messy and LTE has been assumed, the process is 
straightforward. The major difference between the calculation of a stellar interior and 
the construction of a model stellar atmosphere can be seen in the last of equations 
(12.1.1). No longer do we have a situation that can be mathematically described as a 
linear two-point boundary value problem. Because of the assumption of plane 
parallelism the "eigenvalues" of the problem have been reduced to two, Te and g. In 
addition, the four nonlinear differential equations of the interior structure have been 
replaced by one first order differential equation and an integral equation for the 
source function from which all physically relevant moments of the radiation field can 
be calculated. The global nature of this integral equation forces a rather different 
approach to the construction of a model stellar atmosphere from that adopted for the 
stellar interior. 
 

 311



II ⋅ Stellar Atmospheres 
 

 

 We can summarize the equations of atmospheric structure, obtained from 
these conservation laws and assumptions: 

  

           
 In general, we split the problem into two parts, each of which can be solved 
with the knowledge of the other. After making as shrewd a guess as possible for the 
approximate solution of one, we solve the other and use those results to improve the 
initial guess for the first. We can then proceed to solve these two halves of the 
problem alternately until we obtain an answer that is self-consistent and satisfies the 
conditions of radiative equilibrium throughout the atmosphere. The basic division of 
the problem is to calculate the depth dependence of the state variables under the 
assumption of the radiation field and then to use this atmospheric structure to 
improve the radiation field. Since the initial guess for the radiation field is not likely 
to be correct, we cannot expect that radiative equilibrium will be satisfied throughout 
the atmosphere. Thus we try to use the calculated departures from radiative 
equilibrium to modify the physical structure so as to produce a radiation field that 
more nearly satisfies radiative equilibrium. Since we have already dealt with the 
solution of the equation of radiative transfer, most of this chapter involves the 
iterative aspect of the problem. Proper formulation of such a correction scheme will 
provide the basis for forming a rigorous iterative algorithm that will converge to a 
fully self-consistent model atmosphere with a structure that yields a radiation field 
satisfying radiative equilibrium throughout the entire atmosphere. However, we must 
begin with some comments on how to find the dependence of state variables on 
depth in the atmosphere, given the radiation field. This involves the solution of the 
differential equation for hydrostatic equilibrium. 
 
12.2   Structure of the Atmosphere, Given the Radiation Field 
 
 At the outset of any atmosphere calculation we must decide on the particular 
atmosphere to be modeled. Choosing the parameters Te, g, and µ is analogous to 
choosing M, L, R, and µ for the construction of a model stellar interior. Indeed, the 
relationship between them is straightforward:   
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                      (12.2.1) 
  
 a Choice of the Independent Variable of Atmospheric Depth 
 
  Before beginning the model calculation itself, we must choose a 
depth parameter to serve as an independent variable. While the traditional choice has 
always been the optical depth, some more modern atmosphere codes use a "density 
depth" like 

                                (12.2.2) 
as the independent depth variable. As we see, this greatly simplifies the calculation 
of hydrostatic equilibrium, but introduces some difficulties in the solution of the 
equation of transfer. For the most part, we use the traditional optical depth as our 
independent depth variable. 
 
 Which optical depth should we use? Early investigators would pick one of 
the mean opacities to generate a mean optical depth, and this dimensionless, 
frequency-independent variable would provide an excellent parameter for describing 
the atmospheric structure. Unfortunately, the calculation of the mean opacity at 
numerous depths in the atmosphere is a nontrivial undertaking and is completely 
avoidable. Since there is no particular significance for any of the mean opacities, no 
optical depth scale is to be preferred over any other on the basis of the physical 
information contained there. Therefore, it makes good sense to pick a 
monochromatic optical depth at some frequency τ(ν0) (or simply τ0) as the depth 
parameter, thereby avoiding the tedious calculation of the mean opacity and the 
associated mean optical depths. However, since the radiative transfer equation must 
be solved at each frequency, it will be necessary to interpolate the solution to the 
reference optical depth τ0. So it would be wise to choose a frequency in the general 
vicinity of the maximum energy flow through the atmosphere and in a part of the 
spectrum where the opacity does not vary rapidly with frequency. This will tend to 
minimize interpolation errors when the solutions are transferred to the reference 
optical depth. For the majority of the development in this chapter, this is the choice 
that we make. The relevant optical depths are then given by 

                      (12.2.3) 
The parameter κν is just a normalized opacity which relates the differential 
monochromatic optical depth to its counterpart on the reference depth scale. 
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 b Assumption of Temperature Dependence with Depth 
 
  Having specified the nature of the atmosphere and chosen the depth 
parameter, we can begin the calculation of the atmospheric structure with depth. We 
have indicated that we will split the process of making the model into two parts by 
assuming the results of the radiative transfer solution in order to calculate the 
atmospheric structure. The form that this assumption takes is the dependence of the 
temperature with depth. That is, the end result for the solution of the radiative 
transfer calculation will be to generate the dependence of the temperature with depth 
in a manner that is consistent with radiative equilibrium. Thus, to begin our 
calculation, we must assume the existence of this temperature distribution. We may 
obtain this information either as a result of an earlier model calculation or from an 
initial approximation. 
 
 In Section 10.2, we spent considerable effort in solving the equation of 
transfer for the gray atmosphere. One of the results of this effort was the temperature 
distribution in the Eddington approximation [equation (10.2.16)]. Remembering that 
for a gray atmosphere in radiative equilibrium 

                                     (12.2.4) 
we can write the more general result 

                                    (12.2.5) 
where q(τ) is the Hopf function specified in equation (10.2.34). Although the gray 
atmosphere does not specify a unique physical atmospheric structure, it does provide 
a temperature distribution that scales with the effective temperature and is consistent 
with radiative equilibrium. In addition, the opacity in a wide variety of stars is 
relatively independent of frequency over a large part of the spectrum, so that the gray 
atmosphere temperature distribution provides a good first approximation to the actual 
temperature distribution.  However, the accuracy of this assumption does depend on 
the choice of reference optical depth being representative of the atmosphere as a 
whole, so we can only expect it to form an approximate first guess. 
 
 c Solution of the Equation of Hydrostatic Equilibrium 
 
  The equation of hydrostatic equilibrium is a deceptively simple 
looking first-order differential equation. There are many sophisticated methods for 
obtaining the numerical solution to such an equation, but all such methods involve 
knowing at least one value (and usually several values) for the solution at and near 
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the boundary. This poses both philosophical and practical problems. The boundary of 
a plane-parallel atmosphere, while well located in optical depth, is poorly placed in 
physical depth since it formally occurs where the density vanishes. In principle, this 
occurs at an infinite distance from the star where the plane-parallel approximation 
itself would no longer be valid. However, in practice, a small but finite optical depth 
is reasonably located with respect to the photosphere (i.e., near optical depth τ.2/3) 
so that boundary conditions can be specified there without jeopardizing the accuracy 
of the solution. Since we have assumed a distribution of temperature with optical 
depth, there is no problem in determining the boundary temperature.  
 
 In Section 4.1a we discussed how to relate the mass fractions of hydrogen, 
helium, and "metals" to the mean molecular weight and thereby provide a connection 
between the number and mass density. The Saha equations for each element 
[equation (11.1.16)] provide a relationship between the relative ionization fraction, 
the temperature, and the electron pressure. By remembering that the sum of all the 
various states of ionization for a particular element is simply equal to the number 
abundance for the element, it is possible to parameterize the opacity in terms of the 
gas pressure, temperature, and electron pressure. Thus, we may write the total 
pressure at any optical depth as 

                        (12.2.6) 
In a similar manner it is possible to integrate the equation of hydrostatic equilibrium 
[as stated in equation (11.5.3)] so that 

              (12.2.7) 
 We may look for a value of Pe that makes equations (12.2.6) and (12.2.7) 
self-consistent. Numerically this can be accomplished by creating tables of κ0 and σ0 
as functions of Pe so that the integral in equation (12.2.7) can be done directly by any 
efficient quadrature scheme and then a solution found by iteration with equation 
(12.2.6). Details of this procedure are given by Mihalas1. In carrying out this 
procedure, one keeps the value of the optical depth τi sufficiently small that              
T(0) . T(τi). When one has found a self-consistent value of Pe(τi) (and hence all the 
state variables), values of the state variables may be interpolated for all intermediate 
optical depths between 0 and τi. This technique will provide all the required values of 
the pressure to initiate a general numerical integration procedure for the differential 
equation for hydrostatic equilibrium. Since all the other state variables are given in 
terms of algebraic expressions, the entire atmospheric structure may be obtained as a 
function of τ0. 
 
 A note of caution should be interjected at this point concerning the numerical 
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solution described by this procedure. The range in pressures to be expected from the 
solution is several powers of 10. For this reason, logarithmic variables are often used 
to improve the stability of the numerical solution. In any case, the method used to 
solve the equation of hydrostatic equilibrium should be reasonably sophisticated 
since the rapid initial growth of the pressure, if not carefully dealt with, can produce 
systematic errors that destroy the accuracy of the entire atmosphere as the integration 
proceeds. Several investigators have found it necessary to employ up to a seven-
point predictor-corrector integration scheme to achieve the accuracy required. In 
addition, although the remaining equations are indeed algebraic, the Saha equations 
for the various elements and states of ionization represent a system of coupled 
nonlinear algebraic equations and must be solved by iteration. Furthermore, the 
equations for the opacity due to the different elements in their various states of 
ionization and excitation represent a significant amount of calculation. Thus, the 
calculation of κν(τ0) can be quite time-consuming and represents a significant time 
burden for the calculation of the model structure. This is particularly evident when 
one remembers that a multipoint numerical integration scheme requires multiple 
evaluations of the function g/κν to carry out one step in the integration. The situation 
is further exacerbated by the realization that a rapidly varying numerical solution to a 
differential equation usually requires that the solution proceed with very small steps, 
and the range required for the independent variable will be of the order of 2 powers 
of 10. This is the reason that some modern atmosphere codes utilize a density depth 
as given in equation (12.2.2) as the independent depth variable. With this choice, the 
calculation of the opacity is entirely avoided. However, as we see, this choice of an 
independent variable is not without its own set of problems. 
 
 The solution of the equation of hydrostatic equilibrium also provides us with 
the dependence on depth of all the state variables and the various states of ionization 
and excitation of the elements. With this information, it is possible to calculate the 
opacity and hence the radiation field at all points in the atmosphere. 
 
12.3   Calculation of the Radiation Field of the Atmosphere 
 
All Chapter 10 was devoted to solving the equation of radiative transfer, so there is 
no need to repeat the specifics here. However, some numerical aspects of those 
solutions require comment. As even the casual reader of Chapter 10 will notice, the 
general solution of the equation of radiative transfer is fraught with some formidable 
numerical difficulties. Not the least of these is ensuring the numerical accuracy of the 
results. Whether one chooses to solve the integrodifferential equation for the specific 
intensity or the integral equation for the source function of the radiation field, the 
spacing of the optical depth points at which the solution is to be obtained is crucial 
for determining the accuracy of that solution. 
 
 However, to obtain the radiative flux and source function at a sufficient 
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number of frequencies to accurately evaluate the condition of radiative equilibrium, 
we will have to solve the equation of transfer repeatedly over optical depths whose 
range varies widely. For example, the opacity of a normal stellar atmosphere at 
frequencies greater than the Lyman limit of hydrogen will be enormously greater 
than for frequencies in the Balmer continuum for any given physical depth in the 
atmosphere. Hence, the corresponding optical depth will be very much larger. Since 
practical realities require that any radiative transfer solution for a semi-infinite 
atmosphere be truncated at a finite physical depth, we can expect that the 
monochromatic optical depth corresponding to that physical depth will vary greatly 
with frequency. However, we must ensure that the radiative transfer solutions, which 
are calculated at a finite set of depth points that yet span a wide range of optical 
depths, have sufficient accuracy to facilitate the accurate calculation of radiative 
equilibrium. 
 
 The normal method of accomplishing this is to carry out the numerical 
solution of the equation of radiative transfer at a predetermined set of optical depths 
τri, chosen to ensure the accuracy of the solution. All physical parameters required 
for that solution are interpolated from the monochromatic optical depths 
corresponding to the reference depths onto the set of optical depths to be used for the 
radiative transfer solution. Mathematically, this amounts to mapping these 
parameters from the τν space on which they are defined onto the τr space in which 
the equation of radiative transfer will be solved. In many cases, the points in the τr 
space can be chosen to be the same points as those used for the reference depth scale 
τ0, but occasionally they may be a separate set of points. In this case, a further 
mapping of the radiative transfer solution from the τr space to the τ0 space must be 
carried out. The primary reason for this convoluted procedure is to separate the 
numerical errors into two well-defined categories - those arising from the 
interpolation and those arising from the solution of the equation of transfer. The latter 
are generally more difficult to estimate and so are controlled by carrying out the 
solution over a set of optical depths for which the numerical stability of the radiative 
transfer solution is well understood. The errors introduced by the interpolation from 
one optical depth scale to another are generally easier to control. However, a rapid 
and accurate mapping algorithm must be available. Such an algorithm is contained in 
the current version of the atmosphere code known as ATLAS2. 
 
 For the general overall accuracy of the calculation, we require that the most 
accurate solutions be obtained at those frequencies for which the majority of the 
radiative flux flows through the atmosphere. If the reference set of optical depth 
points is chosen to correspond closely to the monochromatic optical depths at those 
frequencies, then the interpolation errors incurred from the mapping procedures will 
be minimal. Frequencies at which the atmosphere is very much optically thicker than 
the reference optical depths will tend to carry less flux simply because the radiation 
can escape more easily at the more transparent frequencies. Hence, the frequencies at 
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which the atmosphere is relatively optically thick, and for which the interpolation 
errors of the mapping can be expected to be the greatest, will make a 
correspondingly smaller contribution to the total flux and to the conditions of 
radiative equilibrium. However, one must be careful that, at the frequencies for 
which the atmosphere is most transparent, a sufficient number of optical depth points 
are chosen to ensure that the maximum optical depth is optically remote from the 
surface. In practice, this generally means that τν >> 10. 
 
12.4   Correction of the Temperature Distribution and Radiative 
 Equilibrium 

 
Having created an accurate representation of the radiation field from the previously 
obtained physical structure, we must see how well the solution conforms to the 
condition of radiative equilibrium. Departures of the radiation field from that 
required to satisfy radiative equilibrium will form the basis for correcting the 
temperature distribution throughout the atmosphere. We have developed the concept 
of radiative equilibrium several times in this book and most recently in Chapter 10 
[equations (10.4.4) and (10.4.5)] as 
 

                       (12.4.1) 
Even though these two conditions are logically equivalent, their utilization for 
generating a temperature correction scheme will be quite different. Although a 
substantial number of temperature correction schemes have been developed during 
the last 40 years, we describe only two. The first is chosen for its simplicity and 
historical interest while the second represents the most widely used method in 
contemporary use. 
  
 a  Lambda Iteration Scheme 
 
  The first of equations (12.4.1) is obtained by setting the total flux 
derivative to zero. In general, the radiation field obtained from our approximate 
structure will not satisfy this expression. If we assume that the reason for this is that 
the temperature used to evaluate the local Planck function is incorrect, we can 
replace the temperature with a first-order Taylor series expansion about the current 
temperature. Thus, 
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      (12.4.2) 
or solving for the temperature correction we have 

                       (12.4.3) 
This is known as the Λ iteration scheme since Jn(t0) = Λ[Bν(τ0)] [see equation 
(10.1.16)]. The method yields suitable corrections to the temperature distribution as 
long as the opacity κν is decidedly nongray. However, as one moves deeper and 
deeper in the atmosphere, Jν → Bν and the integrand vanishes for all frequencies. 
Thus, this method relies on the departure of the source function from the value it 
would have in statistical equilibrium to provide corrections to the local temperature. 
So while the method may produce a useful temperature correction near the surface, 
the correction will become smaller and smaller as one descends into the atmosphere. 
This fact will be reflected in the rate at which the atmosphere converges to a self-
consistent value. Indeed, it may become difficult to even know when meaningful 
convergence has been achieved. To make matters worse, equation (12.4.3) 
guarantees − in principle − that a self-consistent atmosphere with zero total flux 
derivative can be calculated. However, it may not have the desired flux, σTe

4/π. 
Thus, we should look for a method for correcting the temperature that employs the 
second of equations (12.4.1) as well as the first. Such a scheme is due to E. Avrett 
and M. Krook3 although it is more lucidly described by D. Mihalas1 (pp. 35 - 39). 
 
 b   Avrett-Krook Temperature Correction Scheme 
 
  Since the temperature correction scheme is to form the basis for an 
iteration algorithm, it is not essential that it produce the correct temperature the first 
time it is applied. However, repeated application should produce a series of 
temperature distributions which approach the one that is correct for radiative 
equilibrium. Thus, all temperature corrections must vanish asymptotically as the 
sequence approaches radiative equilibrium. This is the only essential criterion for an 
iteration scheme. Therefore, it is not necessary to justify all assumptions made in 
establishing the iterative equations as long as the final result converges to a 
temperature distribution that is consistent with radiative equilibrium. 
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of correcting the temperature distribution. The first is the obvious one of simply 
changing the value of the temperature at some given value of the independent 
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variable τ0. This is the approach taken by the Λ-iteration scheme. A second way to 
find an improved temperature distribution is to find the value of the independent 
variable, in this case the reference optical depth, for which the given temperature is 
the correct temperature. This approach amounts to inverting the problem and treating 
the temperature as the independent variable and perturbing τ0. 
 
 The Avrett-Krook scheme does both, using one statement of radiative 
equilibrium to calculate a temperature correction and the other condition of radiative 
equilibrium to find a new value of the optical depth at which the corrected 
temperature is to be applied. Thus, both temperature and optical depth become 
independent variables in the perturbation calculation. The perturbation equations for 
the temperature are very similar to the Λ-iteration equations and therefore provide 
good corrections near the surface. The perturbation equations for the optical depth 
yield small corrections near the surface, but become significant at larger optical 
depths where the Λ-iteration scheme is ineffective. Thus, the combination yields a 
temperature correction scheme which converges fairly quickly throughout the entire 
atmosphere. Unfortunately, the resulting temperature distribution will not directly 
give the corrected temperatures at the reference optical depths. However, the 
appropriate temperatures at the reference optical depths can be obtained from the 
new temperature distribution by interpolation. 
 
 The basic approach is to express both the correct temperature and the optical 
depth in terms of the given values and a first order correction to them, namely, 

                  (12.4.4) 
The parameter λ simply measures the order of significance for the particular term 
and will eventually be set to unity. Substitution of these expressions into the equation 
of transfer will produce similar corrections in the parameters that describe the 
radiation field so that 

                            (12.4.5) 
We can expand the normalized opacity [equation (12.2.3)] and the Planck function in 
a Taylor Series in t and T, respectively, and get 

            (12.4.6) 
For simplicity, from now on we denote differentiation with respect to optical depth 
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and temperature by 

                                       (12.4.7) 
In addition, for clarity we ignore scattering and treat the problem of pure absorption 
only. Later we give the perturbation equations appropriate for a source function that 
includes scattering, justifying the results on physical grounds alone. 
 
 Perturbed Equation of Radiative Transfer   The general nongray equation of 
transfer for a plane-parallel atmosphere for the case of pure absorption is 
 

                    (12.4.8) 
If we insert the expansions given by equations (12.4.4) and (12.4.5) into this equation 
and ignore all second order terms (i.e., terms involving λ2), we get 
 

 (12.4.9) 
 
Since this equation must hold for any value of λ, we can separate the zeroth- and 
first-order terms. The zeroth-order equation is then  

                          (12.4.10) 
We can use this result to eliminate dIν(0)/dt from the first-order equation so that it 
becomes 

    (12.4.11) 
This equation can be solved by using the Eddington approximation to moments of 
the equation in a manner that should be familiar by now. 
 
 Forming the first two moments of equation (12.4.11) (i.e., just integrating 
over all µ to obtain the first and multiplying by µ and integrating to get the second), 
we obtain 
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In the second equation, we have already assumed that the Eddington approximation 
can be applied to the first-order perturbations as it is to the entire radiation field. 
 
 
 Tau Perturbation Equation   Now we integrate the second of equations 
(12.4.12) over all frequencies and get 

(12.4.13) 
Requiring that 

                                                (12.4.14) 
guarantees that the left-hand side of equation (12.4.13) will vanish. The assumption 
stated by equation (12.4.14) is justified by expediency alone. However, it is an 
assumption concerning the perturbation only and therefore can affect only the rate of 
convergence. There may be some instances where this approximation should be 
replaced. However, to do so, we must know something additional about the problem. 
 
 The first term on the right-hand side of equation (12.4.13) is just the 
integrated flux error so that 

                            (12.4.15) 
where 

                                             (12.4.16) 
With this, we can rewrite equation (12.4.12) as a first-order linear differential 
equation for the perturbed optical depth  
 

                  (12.4.17) 
All that remains is to specify a boundary condition for the solution of the equation. 
An appropriate condition is 

                                      (12.4.18) 
While this condition appears to be arbitrary, it anticipates the result for the T 
perturbation which will provide the majority of the correction at the surface. The 
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boundary condition given in equation (12.4.18) will ensure that the tau corrections 
are small near the surface and thus will not compete heavily with the T corrections. 
 
 Temperature Perturbation Equation  To obtain the T perturbation equation, 
we begin with the first of equations (12.4.12). Since we required that the derivative 
of the perturbed mean intensity Jν(1) be zero at all frequencies and depths [equation 
(12.4.14)], we may get the last term on the right-hand side of the first of equations 
(12.4.12) from the second equation, so that 

                      (12.4.19) 
That same assumption on the derivative of the perturbed mean intensity will require 
that 

                         (12.4.20) 
The last term implies the Eddington approximation; so that a  is usually taken to be 
½. However, some authors use somewhat different values for a based on empirical 
work. As with any iteration scheme, one that works is a good one. Remembering that 
we have assumed a boundary condition on the τ(1) - equation of τ(1) = 0, we see that 
equations (12.4.17) and (12.4.19) give 

                        (12.4.21) 
Thus, we may obtain the perturbed value for J as  

                 (12.4.22) 
Inserting this result and equation (12.4.19) into the first of equations (12.4.12) we get 

            (12.4.23) 

From the definition of F’ν(1) we know that 

                 (12.4.24) 
Incorporating this into equation (12.4.23), integrating over all frequencies, and 
remembering that the condition of radiative equilibrium applies to the zeroth-order 
equations, we finally get the perturbation equation for the temperature as 
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 (12.4.25) 
 We now have expressions for the temperature corrections T(1)(t) and the 
corrected values of the optical depth t + τ(1), to which they are to apply. Interpolation 
of this temperature distribution back onto the original optical depth scale completes 
the temperature correction procedure. A comparison of equations (12.4.25) and 
(12.4.3) shows that the Avrett-Krook temperature correction equation is indeed very 
close to the Λ-iteration equation. However, an additive constant appears in the 
Avrett-Krook equation which ensures that the corrections will converge to the 
correct flux F.  
 
 Perturbation Equations Including Scattering               The inclusion of 
scattering significantly complicates the algebra of deriving the perturbation 
equations, but not the concept. However, the essence of the problem can be seen 
without suffering through the algebra of the derivation. Consider a very general 
source function such as that given in equation (10.1.7). The parameter εν is a 
measure of the fraction of photon interactions that can be viewed as pure absorptions. 
Thus, 1-εν is the relative fraction of scatterings. Since at the microscopic level 
scattering is a fully conservative process, we should expect it to have no influence on 
the physical structure of the atmosphere. Scattering decouples the radiation field 
from the physical domain of the gas. Thus, any temperature correction procedure will 
become less well defined for an atmosphere where the opacity becomes more nearly 
gray. 
 
 To carry out the perturbation analysis, we must add a perturbation equation 
for εν(τ0) similar to equations (12.4.6). It could take the form 

                       (12.4.26) 
As with the opacity, an assumption is made that the derivatives with respect to 
optical depth are more important than the derivatives with respect to temperature. 
The appropriate equation of radiative transfer analogous to equation (12.4.8) is then 

 (12.4.27) 
where κν is now defined by 

                                     (12.4.28) 
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Development of the two moment equations analogous to equations (12.4.12) will 
show that the second is unchanged by the presence of scattering. This leads to the 
happy result that the tau perturbation equation is also unchanged, so that equation 
(12.4.17) and its solution are correct for the more general case including scattering. 
 
 The presence of scattering does modify the first moment equation of 
equations (12.4.12). This yields a somewhat different temperature perturbation 
equation from equation (12.4.25). With scattering, it takes the form 

 (12.4.29) 
In the limit of pure absorption where εν → 1, we recover immediately equation 
(12.4.25). As we approach the limit of a pure scattering atmosphere εν → 0. All 
terms in the numerator of equation (12.4.29) clearly vanish. Unfortunately so does 
the denominator, leaving the asymptotic behavior of T(1) in doubt. An application of 
L'Hospital's rule shows that the temperature correction terms indeed formally go to 
zero for the case of pure scattering. However, many of the terms of equation 
(12.4.29) are difficult to calculate numerically so that the practical result of increased 
scattering will be to at first slow the rate of convergence of the iteration procedure. 
The iteration procedure will become unstable as the amount of scattering becomes 
very large. This is not surprising since the instability merely reflects the decoupling 
of the radiation field from the physical structure of the atmosphere. 
 
 Equations (12.4.17) and (12.4.29) provide the mechanism by which 
departures from radiative equilibrium can be translated to an improved temperature 
distribution. With this temperature distribution, we may return to the beginning of 
this chapter and re-compute the structure and improved radiation field of the 
atmosphere. The entire process can be iterated until radiative equilibrium is satisfied 
at the appropriate level. 
 
12.5   Recapitulation 
 
Building on the results of the previous three chapters, We present in this chapter the 
basic approach to the construction of a model stellar atmosphere. The process is 
essentially an iterative one where an initial guess of the temperature distribution 
throughout the atmosphere yields the atmosphere's physical structure. To obtain this 
structure, one needs a lot of information about the dependence of the opacity on the 
state variables of the gas. One generally assumes that the Saha ionization and 
Boltzmann excitation formulas hold so that one can relatively easily calculate the 
abundance of each type of absorber in the atmosphere. This, then, allows for the 
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solution of the equation of hydrostatic equilibrium and the calculation of the 
radiation field at all points in the atmosphere. Application of the condition of 
radiative equilibrium and a temperature correction procedure allow for the entire 
process to be iterated until a self-consistent model of the atmosphere is obtained. 
 
 What constitutes a converged, self-consistent atmosphere is not at all obvious 
and may depend on which properties of the model are of particular interest to the 
investigator. For example, it makes little sense to require 0.1 percent constancy in the 
radiative flux at optical depth 100 if one is interested in only the emergent flux. 
Conversely, if the atmosphere is to form the boundary layer for the calculation of a 
model stellar interior, then some care should be taken with the deep solution. If one 
is concerned about strong spectral lines, then considerable care should be taken with 
the surface solution. Since it is still relatively difficult to construct a model stellar 
atmosphere that exhibits both a constant flux and a zero flux derivative throughout 
the atmosphere at an arbitrary level of accuracy, such considerations regarding the 
use of the model should be weighed. 
 
 We have now completed the fundamental physics concerning the 
construction of models for both the inside and surface layers of a star. For normal 
stars, these models would give a reasonably accurate picture of the structure of these 
stars and the processes that take place within them. We have even included the 
departure of the radiation field from strict thermodynamic equilibrium that results 
from the escape of photons that are near the surface into free space. To the extent that 
the continuous opacity dominates the total stellar opacity, this will even yield a 
reasonably correct picture of the grosser aspects of the star's spectrum. However, as 
anyone who has looked at a stellar spectrum knows, the most salient feature of such a 
spectrum is the dark lines that cover it. These lines provide most of the information 
that we have about stars, from their composition to their motions. No description of 
stellar structure can hope to be taken seriously unless it provides some explanation of 
the occurrence of these lines. Therefore, for the majority of the rest of this book, we 
discuss the fundamentals of the formation of spectral absorption lines and the physics 
that yields their characteristic shape. 
 
Problems 
 
1. Assume that all particles in a normal GV star at optical depth τ(λ5000) = 1 
 have the same speed. Estimate the time required for LTE to be established. 

 
2. Starting with the gray atmosphere temperature distribution, find the rate of 

convergence toward radiative equilibrium as a function of the Rosseland 
optical  depth for a standard atmosphere (i.e., Te=10,000 K, Log g = 4.0, and 
the chemical composition m equals that of the sun). Explicitly define what 
you mean by the "rate of convergence". 
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3. As one moves deeper into a stellar atmosphere, the dependence of the source 

function becomes more linear with optical depth. Is this a result of the 
opacity becoming more gray (i.e., independent of wavelength), or does the 
result follow from the directional randomization of the radiation field? Give 
explicit evidence to support your conclusion. 

 
4. Compute Fλ/Fλ(λ5560) for a nongray atmosphere where  
  (a) σλ = 0, and  κλ = a + bλ and the effective temperature  
  Te = 5000 K,  and   
  (b) same as in (a) but with κλ=a.  
  
 Assume that the Eddington approximation is sufficiently accurate to solve 
 the equation of radiative transfer.  

  (c) how do Fλ(l2000) and Fλ(l5560) vary with the optical depth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 327



II ⋅ Stellar Atmospheres 
 

 

 
 
References and Supplemental Reading 
 
1. Mihalas, D. Methods in Computational Physics, (Eds: B. Alder, S. Fernbach, 

and M.Rotenberg), Vol. 7 Academic, New York, 1967, pp.24 - 27. 
 
2..  Kurucz, R.L.   ATLAS: A Computer Program for Calculating Model Stellar   
            Atmospheres, SAO Special Report 309, 1970. 
 
 
4.  Avrett,E.H., and Krook,M. The Temperature Distribution in a                         
           StellarAtmosphere, Ap.J.137, 1963, pp.874 - 880. 

 
For further insight into temperature correction procedures, the student should read 

 
 Mihalas, D.: Stellar Atmospheres, W.H.Freeman, San Francisco, 1970  
 pp.169 - 186. 
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student make some effort to at least peruse some of these references: 
 
 Aller, L.: The Atmospheres of the Sun and Stars, 2d ed.,Ronald, New York, 1963. 
 
 Ambartsumyan, V. A. Theoretical Astrophysics, (Trans.: J. B. Sykes), Pergamon,    
  New York, 1959,  pp.1 - 106. 
 
 Barbier, D. "Theorie Generale des Atmospheres Stellaire", Handbuch der Physik, 
vol. 51, Springer-Verlag, Berlin, 1958, pp. 274 - 397. 
 
 Chandrasekhar,S. Radiative Transfer, Dover, New York, 1960. 
 
 Greenstein,J.L.: Stars and Stellar Systems, vol. 6, “Stellar Atmospheres”, (Ed.: J. L. 
Greenstein), University of Chicago Press, Chicago, 1960,(particularly the articles by 
G. Münch and A. D. Code) pp.1 - 86. 
 328



12 ⋅ Construction of a Model Stellar Atmosphere⋅ 
 

 329

  

 
 Kourganoff, V.: Basic Methods in Transfer Problems, Dover, New York, 1963. 
 
 Menzel, D. H.: Selected Papers on the Transfer of Radiation,  Dover, New York, 
1966. 
 
 Pagel, B. E. J.: The Surface of a Star, Quart. J. R. astr. Soc., 1, 1960, pp. 66 - 72. 
 
 Sobolev, V. V.: A Treatise on Radiative Transfer, (Trans.: S. I. Gaposchkin), Van 
Nostrand, Princeton, N.J., 1963. 
 
 Underhill, A. B.: Some Methods for Computing Model Stellar Atmospheres, Quart. 
J. R. astr. Soc. vol. 3, 1963, pp. 7 - 24. 
 
 Unsöld, A.: Physik der Sternatmosphαren, 2d ed. Springer-Verlag, Berlin, 1955.  
 
 Waldmier, M.:  Einführung in die Astrophysik, Birkhαuser Verlag, Basel, 
Switzerland, 1948. 
 
 Wooly, R. v. d. R., and Stibbs, D. W. N.: The Outer Layers of a Star, Oxford 
University Press, London, 1953.  
 


