CHAPTER 1
PETROLOGY AND CHEMISTRY OF TERRESTRIAL, LUNAR AND METEORITIC BASALTS
1.1
INTRODUCTION
2
1.2
SURVEY OF MAJOR BASALT TYPES
5
1.2.1
MAFIC AND ULTRAMAFIC VOLCANISM DURING THE ARCHEAN
5
1.2.1.1
Introduction
5
1.2.1.2
Description of principal rock types
5
1.2.1.3
Major element chemistry
15
1.2.1.4
Variations in some trace elements
18
1.2.1.5
Petrogenesis
24
1.2.1.6
References
28
1.2.2
PRE-TERTIARY CONTINENTAL FLOOD BASALTS
30
1.2.2.1
Introduction
30
1.2.2.2
Geological setting
30
1.2.2.3
Petrography and mineralogy
42
1.2.2.4
Petrochemistry
46
1.2.2.5
The Keweenawan reference suite of the North Shore Volcanic Group
60
1.2.2.6
References
74
1.2.3
TERTIARY CONTINENTAL FLOOD BASALTS
78
1.2.3.1
Introduction
78
1.2.3.2
Columbia River Province
78
1.2.3.3
British Isles Province
88
1.2.3.4
Faeroe Islands Province
91
1.2.3.5
Iceland Province
92
1.2.3.6
Greenland Province
96
1.2.3.7
Deccan Traps Province
98
1.2.3.8
Synthesis of major element variations
99
1.2.3.9
Petrogenesis
101
1.2.3.10
References
105
1.2.4
CONTINENTAL RIFT VOLCANISM
108
1.2.4.1
Introduction and review
108
1.2.4.2
Rio Grande rift
109
1.2.4.3
The Taos Plateau Reference Suite
114
1.2.4.4
Isotope chemistry
122
1.2.4.5
Mineral chemistry
122
1.2.4.6
Petrogenesis
128
1.2.4.7
References
130
1.2.5
OCEAN-FLOOR BASALTIC VOLCANISM
132
1.2.5.1
Introduction
132
1.2.5.2
Tectonic setting
133
1.2.5.3
Petrography and mineralogy
134
1.2.5.4
Major element chemistry
139
1.2.5.5
Trace element chemistry
142
1.2.5.6
Isotope chemistry
149
1.2.5.7
Petrogenesis
150
1.2.5.8
Partial melting and the mantle source
155
1.2.5.9
References
157
1.2.6
OCEANIC INTRAPLATE VOLCANISM
161
1.2.6.1
Introduction
161
1.2.6.2
Regional tectonic and temporal setting of the Hawaiian Chain
162
1.2.6.3
Major element chemistry of oceanic intraplate basalts
163
1.2.6.4
Trace element chemistry
168
1.2.6.5
Mineralogy
176
1.2.6.6
Petrogenesis
186
1.2.6.7
Source region chemistry and mineralogy
190
1.2.6.8
References
190
1.2.7
ISLAND ARC BASALTS
193
1.2.7.1
Introduction
193
1.2.7.2
Island arc basalt reference suite
193
1.2.7.3
Review of island arc basalts
204
1.2.7.4
References
212
1.2.8
THE BASALTIC METEORITES
214
1.2.8.1
Introduction
214
1.2.8.2
Reference Suite
216
1.2.8.3
Petrography of meteoritic basalts
216
1.2.8.4
Chemical composition
220
1.2.8.5
Mineral chemistry
222
1.2.8.6
Petrogenesis of meteoritic basalts
229
1.2.8.7
References
233
1.2.9
LUNAR MARE BASALTS
236
1.2.9.1
Introduction
236
1.2.9.2
Regional setting and temporal relations
236
1.2.9.3
Major element chemistry
239
1.2.9.4
Trace element chemistry
242
1.2.9.5
Petrology
254
1.2.9.6
Mineralogy
259
1.2.9.7
Petrogenesis
263
1.2.9.8
Concluding statement
264
1.2.9.9
References
265
1.2.10
LUNAR HIGHLAND BASALTS
268
1.2.10.1
Source regions and time scales of highland volcanism
268
1.2.10.2
Highland reference suite
269
1.2.10.3
Distinction of impact melt-rocks from volcanic rocks
270
1.2.10.4
Petrography of selected LKFM and IKFM samples
271
1.2.10.5
Petrogenesis of lKFM
277
1.2.10.6
Petrogenesis of LKFM
278
1.2.10.7
Conclusions
279
1.2.10.8
References
279
1.2.11
ULTRAMAFIC XENOLITHS IN TERRESTRIAL VOLCANICS AND MANTLE MAGMATIC PROCESSES
282
1.2.11.1
Introduction
282
1.2.11.2
Present study
283
1.2.11.3
Geologic setting of samples
283
1.2.11.4
Pertographic summary
284
1.2.11.5
Mineral chemistry and P-T estimates
287
1.2.11.6
Major element and lithophile trace element chemistry
289
1.2.11.7
Siderophile and volatile element chemistry
297
1.2.11.8
Sr and Nd isotope chemistry
304
1.2.11.9
Oxygen isotope chemistry
306
1.2.11.10
Concluding remarks
307
1.2.11.11
References
307
1.3
PLANETARY COMPARISONS
311
1.3.1
BASALTS AS PROBES OF PLANETARY INTERIORS: CONSTRAINTS FROM MAJOR AND TRACE ELEMENT CHEMISTRY
311
1.3.1.1
Introduction
311
1.3.1.2
Recognition of primary magmas
311
1.3.1.3
Role of planet size
312
1.3.1.4
Major element characteristics of planetary basalt
312
1.3.1.5
Mantle source mineralogy
318
1.3.1.6
Trace elements
321
1.3.1.7
Implications of trace element abundances
326
1.3.1.8
Summary
335
1.3.1.9
References
336
1.3.2
SILICATE MINERALOGY OF PLANETARY BASALTS
340
1.3.2.1
Introduction
340
1.3.2.2
Olivines
340
1.3.2.3
Feldspars
342
1.3.2.4
Pyroxenes
342
1.3.2.5
Pyroxene substitution couples
350
1.3.2.6
Summary and conclusions
353
1.3.2.7
References
354
1.3.2.8
Appendix
354
1.3.3
COMPARATIVE PETROGRAPHY AND COOLING RATES
364
1.3.3.1
Controls on texture
364
1.3.3.2
Textural comparisons
365
1.3.3.3
Quantitative cooling rates
369
1.3.3.4
Implications of textures
370
1.3.3.5
References
370
1.3.4
TEMPERATURES AND GAS FUGACITIES OF PLANETARY BASALTS
371
1.3.4.1
Introduction
371
1.3.4.2
Methods and analysis
371
1.3.4.3
Terrestrial basalts
371
1.3.4.4
Lunar basalts
375
1.3.4.5
Basaltic achondrites
376
1.3.4.6
The redox state of basalt source regions
378
1.3.4.7
Inner solar system basalts
381
1.3.4.8
Summary
382
1.3.4.9
References
382
1.3.5
VOLATILES IN PLANETARY BASALTS: HYDROGEN, CARBON AND SULFUR GAS SPECIES
385
1.3.5.1
Introduction
385
1.3.5.2
Volcanic gases
385
1.3.5.3
Volatiles in basalts
390
1.3.5.4
Water
393
1.3.5.5
Carbon
393
1.3.5.6
Sulfur
395
1.3.5.7
Summary
396
1.3.5.8
References
397
1.4
PRIMARY MAGMAS AND MAGMA EVOLUTION
399
1.4.1
PROCESSES THAT AFFECT BASALTIC MAGMA COMPOSITION
399
1.4.1.1
Introduction
399
1.4.1.2
Crystal fractionation
400
1.4.1.3
Results from some selected studies
401
1.4.1.4
Magma mixing
404
1.4.1.5
Assimilation
405
1.4.1.6
Partial melting
405
1.4.1.7
A comment about use of models for composition-modifying processes
406
1.4.1.8
Conclusions
406
1.4.1.9
References
407
1.4.2
CHARACTERISTICS OF PRIMARY BASALTIC MAGMAS
409
1.4.2.1
Introduction
409
1.4.2.2
Characteristics of primary basalts
410
1.4.2.3
Discussion of primary terrestrial magmas
424
1.4.2.4
Conclusions
428
1.4.2.5
References
429
1.5
CONCLUSIONS
433
1.5.1
HETEROGENEITIES IN INTER- AND INTRAPLANETARY BASALT SOURCE REGIONS
433
1.5.2
SILICATE MINERALOGY OF PLANETARY BASALTS
434
1.5.3
TEMPERATURES, OXYGEN FUGACITY, VOLATILES
434
1.5.4
FACTORS IN BASALT VARIATION
434
CHAPTER 2
REMOTE SENSING OF BASALTS IN THE SOLAR SYSTEM
2.1
INTRODUCTION
440
2.2
BASALTS ON SOLAR SYSTEM BODIES
441
2.2.1
Moon
441
2.2.2
Earth
458
2.2.3
Mercury
460
2.2.4
Mars
461
2.2.5
Venus
464
2.2.6
Asteroids and satellites
465
2.3
REMOTE-SENSING TECHNIQUES
470
2.3.1
Orbital gamma-ray spectroscopy
470
2.3.2
Orbital X-ray
474
2.3.3
Visible and near-infrared reflectance spectroscopy
477
2.3.4
Multispectral mapping
481
2.3.5
In Situ analyses
483
2.4
SUMMARY
484
2.5
REFERENCES
485
CHAPTER 3
EXPERIMENTAL PETROLOGY OF BASALTS AND THEIR SOURCE ROCKS
3.1
INTRODUCTION
494
3.1.1
Historical developments
495
3.1.2
Generation of basaltic magmas
498
3.1.3
Forward and inverse approach in basalt-source relationships
500
3.1.4
Experimental petrology in a flow diagram for the inverse approach
501
3.2
EXPERIMENTAL PROCEDURES AND INTERPRETATIONS
513
3.2.1
Documentation of experiments
513
3.2.2
Experimental techniques
515
3.2.3
Composition control during experimentation: the container problem
517
3.2.4
Equilibrium and its recognition
519
3.3
TERRESTRIAL ROCKS
523
3.3.1
Source rocks and magmas
523
3.3.2
Phase relationships of peridotite
532
3.3.3
Compositions of liquids from partial melting of peridotite
545
3.3.4
Phase relationships of abundant basalts
556
3.3.5
Phase relationships and petrogenesis of picrites and komatiites
563
3.3.6
Phase relationships and petrogenesis of highly SiO2- undersaturated magmas
564
3.3.7
Petrogenesis of basalts and andesites
567
3.3.8
Does the inverse approach work on Earth?
572
3.4
LUNAR BASALTS
577
3.4.1
Highland basalts
583
3.4.2
Mare basalts
585
3.4.3
Experimental constraints on the bulk composition of the Moon
590
3.5
METEORITIC BASALTS
591
3.5.1
Terminology and brief description of basaltic achondrites
591
3.5.2
Experimental studies
592
3.5.3
Cumulate eucrites
593
3.5.4
Primary or differentiated liquids?
593
3.5.5
The bulk composition of the source regions of eucritic magmas
596
3.5.6
Experimental petrology as a guide to the origins of meteoritic basalts
596
3.6
OTHER PLANETS
597
3.6.1
The composition and petrology of planetary mantles
597
3.6.2
Testing of model mantle compositions
601
3.6.3
Implications of model mantles for basalt genesis
602
3.6.4
Solar system exploration and the inverse approach
603
3.7
OVERVIEW SUMMARY
605
3.8
APPENDIX
609
3.9
REFERENCES
621
CHAPTER 4
GEOPHYSICAL AND COSMOCHEMICAL CONSTRAINTS ON PROPERTIES OF MANTLES OF THE TERRESTRIAL PLANETS
4.1
INTRODUCTION
634
4.2
GEOPHYSICAL CONSTRAINTS
634
4.2.1
Geodetic constraints
634
4.2.2
Seismic data
636
4.2.3
Gravity data
637
4.2.4
Other geophysical inputs
637
4.3
COSMOCHEMICAL CONSTRAINTS
638
4.3.1
The overall composition of the solar system
638
4.3.2
Compositional differences among the planets
638
4.4
PLANETARY MODELLING
657
4.4.1
General considerations
657
4.4.2
Planetary models for the compositions of section 4.3.2
660
4.5
MODELS OF THE TERRESTRIAL PLANETS
662
4.5.1
Earth
662
4.5.2
The Moon
666
4.5.3
Mercury
678
4.5.4
Venus
682
4.5.5
Mars
685
4.5.6
The eucrite parent body
689
4.5.7
Galilean satellites
692
4.6
CONCLUSIONS
693
4.7
REFERENCES
695
CHAPTER 5
DISTRIBUTION AND MORPHOLOGY OF BASALT DEPOSITS ON PLANETS
5.1
INTRODUCTION
702
5.2
FACTORS GOVERNING ERUPTION MECHANISMS AND BASALTIC VOLCANO MORPHOLOGY
702
5.2.1
Magma ascent and magma rheology
702
5.2.2
Gas loss
706
5.2.3
Discharge rate
709
5.2.4
The lava tube mechanism
710
5.2.5
Topography
711
5.2.6
Effect of water
711
5.2.7
Tectonic control
713
5.2.8
The replenished reservoir model
714
5.3
TERRESTRIAL BASALTIC VOLCANOES
717
5.3.1
Subaerial basaltic volcanism
717
5.3.2
Basaltic volcanism in aqueous environments
727
5.3.3
Volcanic craters
744
5.3.4
Subvolcanic processes and their surface expression
747
5.4
BASALTIC VOLCANISM ON THE MOON
749
5.4.1
Introduction
749
5.4.2
The lunar maria
751
5.4.3
Mare volcanic structures
753
5.4.4
Relationship of mare volcanic features to eruption conditions
759
5.4.5
The filling of the mare basins
760
5.4.6
Nonmare volcanism
762
5.4.7
Summary of lunar basaltic volcanism
763
5.5
BASALTIC VOLCANISM ON MERCURY
764
5.5.1
Introduction
764
5.5.2
Plains units as volcanic units
766
5.5.3
Possible volcanic landforms
768
5.5.4
Summary
772
5.6
BASALTIC VOLCANISM ON MARS
772
5.6.1
Introduction
772
5.6.2
Central constructs
774
5.6.3
Volcanic plains
783
5.6.4
Features of uncertain origin
786
5.6.5
Summary
787
5.7
BASALTIC VOLCANISM ON VENUS (?)
788
5.7.1
Introduction
788
5.7.2
Environmental controls on venusian volcanism
788
5.7.3
Volcanic constructs
789
5.7.4
Summary
789
5.8
SATELLITES AND ASTEROIDS
790
5.8.1
Introduction
790
5.8.2
Io
790
5.9
SUMMARY
792
5.10
REFERENCES
793
CHAPTER 6
TECTONICS OF BASALTIC VOLCANISM
6.1
INTRODUCTION
804
6.2
TECTONICS OF ACTIVE BASALTIC VOLCANISM
804
6.2.1
Tectonics of basaltic eruption at plate margins
804
6.2.2
Tectonics of non-plate-margin basalt
829
6.2.3
Tectonics of active volcanism elsewhere in the solar system
847
6.3
TECTONICS OF BASALTIC VOLCANISM ON EARTH IN THE LATTER HALF OF EARTH HISTORY
848
6.3.1
Tectonics of basaltic eruption at plate margins in the past
848
6.3.2
Tectonics of non-plate-margin basalt in the past
859
6.4
TECTONICS OF BASALTIC VOLCANISM ON EARTH IN THE FIRST HALF OF EARTH HISTORY
861
6.4.1
Tectonics of Archean basaltic volcanism
861
6.5
TECTONICS OF BASALTIC VOLCANISM ON OTHER TERRESTRIAL PLANETS
868
6.5.1
Tectonics of basaltic volcanism on the Moon
869
6.5.2
Tectonics of basaltic volcanism on Mars
873
6.5.3
Tectonics of basaltic volcanism on Mercury
878
6.5.4
Tectonics of basaltic volcanism on Venus
881
6.6
TECTONICS OF BASALTIC MAGMA MIGRATION
883
6.7
REFERENCES
887
CHAPTER 7
RADIOGENIC AND STABLE ISOTOPES, RADIOMETRIC CHRONOLOGY, AND BASALTIC VOLCANISM
7.1
INTRODUCTION AND GENERAL PRINCIPLES
902
7.1.1
Scope of this section
902
7.1.2
Application of radioactive decay to date and otherwise characterize geological events
904
7.1.3
Trace element systematics and basaltic volcanism
919
7.1.4
Stable isotopes as geochemical tracers in problems of basaltic volcanism
927
7.2
CHRONOLOGIC AND ISOTOPIC STUDIES ON BASALTIC METEORITES
935
7.2.1
Introduction
935
7.2.2
Oxygen isotope results
935
7.2.3
Potential chronologies
937
7.2.4
Review of geochronological data
937
7.2.5
Chemical nature of the eucrite parent body
945
7.2.6
Summary
947
7.3
CHRONOLOGY OF LUNAR VOLCANISM
948
7.3.1
Introduction
948
7.3.2
Technical remarks about the methods
949
7.3.3
Mare basalt ages
953
7.3.4
Interpretation of isotopic data from mare basalts
959
7.3.5
Highlands
968
7.3.6
Basin chronology
971
7.4
THE EARTH
974
7.4.1
Variations in ancient terrestrial basaltic volcanism
974
7.4.2
Sources of terrestrial basalts: isotopic characteristics
987
7.4.3
Genetic relationship between ultramafic rocks and basalts: isotopic and trace element studies
1014
7.4.4
Noble gases as trace elements
1025
7.5
REFERENCES
1031
CHAPTER 8
CHRONOLOGY OF PLANETARY VOLCANISM BY COMPARATIVE STUDIES OF PLANETARY CRATERING
8.1
BACKGROUND OF STUDY
1050
8.2
METHODOLOGY AND DEFINITIONS
1054
8.3
CURVE-FITTING PROCEDURES
1063
8.4
EMPIRICAL DETERMINATION OF CRATER PRODUCTION RATES IN THE EARTH-MOON SYSTEM
1069
8.5
EFFECTIVE CRATER PRODUCTION RATES ON THE OTHER PLANETS
1075
8.6
RESULTS: ESTIMATES OF AGES OF VOLCANIC FEATURES ON THE PLANETS
1081
8.7
DISCUSSION OF DATA AND INDIVIDUAL PROVINCES
1086
8.8
COMPARISON OF RESULTS WITH RESULTS OF TECHNIQUES USING SMALL CRATERS
1096
8.8.1
Examples of small, nonimpact craters and associated interpretive problems
1097
8.8.2
Empirical correlation of DL and Cs ages with other ages
1099
8.8.3
Evaluation of DL in context of hypotheses for small-crater origin
1101
8.8.4
Problems of comparing small-crater counts by different investigators
1102
8.8.5
Conclusion
1103
8.9
THE PROBLEM OF UPLAND OR "PREMARE" VOLCANISM
1104
8.10
SUMMARY AND CONCLUSIONS
1107
8.11
APPENDIX
1111
8.12
REFERENCES
1125
CHAPTER 9
THERMAL HISTORIES OF THE TERRESTRIAL PLANETS
9.1
INTRODUCTION
1130
9.1.1
Volcanism and thermal history
1130
9.1.2
Chapter outline
1131
9.1.3
Principal conclusions
1132
9.2
HISTORICAL REVIEW
1133
9.3
THERMAL MODEL CALCULATIONS
1135
9.3.1
Equations and parameters
1135
9.3.2
Methods of solution for thermal convection
1137
9.3.3
Thermal history modelling techniques
1140
9.4
PHYSICAL PROPERTIES
1144
9.4.1
Heat sources
1144
9.4.2
Thermal conductivity and thermo-dynamic parameters
1151
9.4.3
Rheology
1157
9.4.4
Adiabatic gradients and phase changes
1162
9.5
PLANETARY THERMAL MODELS
1167
9.5.1
Earth
1168
9.5.2
Moon
1188
9.5.3
Mars
1198
9.5.4
Mercury
1203
9.5.5
Venus
1208
9.5.6
Asteroids
1212
9.6
OVERVIEW AND AFTERTHOUGHTS
1217
9.6.1
Early melting in the planets
1217
9.6.2
The role of thermal convection and plate tectonics in the planets
1218
9.6.3
Degree of global differentiation and recycling
1219
9.6.4
Magma vs. depth and time in the planets
1220
9.6.5
Status of numerical modelling
1220
9.6.6
New measurements that might test models
1221
9.7
REFERENCES
1221
CHAPTER 10
IMPLICATIONS OF BASALTIC VOLCANISM FOR THE EVOLUTION OF PLANETARY BODIES
10.1
INTRODUCTION
1238
10.2
ORIGIN AND EARLY EVOLUTION OF THE PLANETS
1238
10.2.1
Sun's formation and early evolution
1238
10.2.2
Solar nebular models; gravitational instability
1239
10.2.3
Dust instability and planetesimal growth hypothesis
1240
10.2.4
Gas instability and giant protoplanet hypothesis
1242
10.2.5
Small body heating and differentiation
1242
10.2.6
Initial energetics of terrestrial planets
1243
10.2.7
Early planet differentiation
1245
10.3
SUBSEQUENT EVOLUTION OF THE PLANETS
1246
10.3.1
The Earth
1246
10.3.2
The Moon
1249
10.3.3
Mars
1250
10.3.4
Mercury
1252
10.3.5
Venus
1253
10.3.6
Galilean satellites
1254
10.4
LEADING INFERENCES
1254
10.4.1
A general model
1254
10.4.2
Variations and exceptions
1256
10.4.3
Consequences for, and constraints from, basaltic volcanism
1258
10.4.4
Outstanding problems and directions for the future
1260
10.5
REFERENCES
1261
Locality Index
1265
Subject Index
1273
Plates
MICROFICHE APPENDIX
INAA Analyses
I-2
A-1
Archean Suite
I-3
A-2
Keweenawan Suite
I-24
Table 1 -- Pyroxenes in North Shore Volcanic Group
I-46
Table 2 -- Plagioclases in North Shore Volcanic Group
I-51
A-3
Columbia Plateau Suite
I-56
A-4
Taos Plateau Suite
I-68
A-5
Ocean Floor Suite
I-86
Table 1 -- Major Element Abundances
II-8
Table 2 -- Trace Element Abundances
II-10
Table 3 -- Modal Mineralogy
II-11
A-6
Hawaiian Suite
II-14
Table 1 -- Suite Description
II-15
Table 2 -- Modal Mineralogy
II-42
Table 3 -- Major Element Abundances
II-48
A-7
Island Arc Suite
II-54
A-8
Basaltic Meteorite Suite
II-69
Table 1 -- Terrestrial History of Samples
II-70
Table 2 -- Classification of Samples by Principal Characteristics
II-71
Table 3 -- Separated Clasts & Whole Rock Samples for Analysis
II-72
Table 4 -- Stannern Clast Designations
II-75
Table 5 -- Pasamonte Clast Designations
II-77
Table 6 -- INAA Analyses of Eucrite Clasts & Matrix Samples
II-81
Figure 1 -- Rare-Earth Element Data
II-84
References
II-87
A-9
Lunar Mare Basalt Suite
II-88
A-10
Lunar Highland Basalt Suite
II-91
A-11
Ultramafic Suite
II-94
A-12
Planetary Mineralogy (cards III-V)
III-1
Table 1 -- Olivines
III-2
Table 2 -- Feldspars
III-38
Table 3 -- Pyroxenes
IV-95