CHAPTER 1

PETROLOGY AND CHEMISTRY OF TERRESTRIAL, LUNAR AND METEORITIC BASALTS

1.1 INTRODUCTION 2
1.2 SURVEY OF MAJOR BASALT TYPES 5
1.2.1 MAFIC AND ULTRAMAFIC VOLCANISM DURING THE ARCHEAN 5
1.2.1.1 Introduction 5
1.2.1.2 Description of principal rock types 5
1.2.1.3 Major element chemistry 15
1.2.1.4 Variations in some trace elements 18
1.2.1.5 Petrogenesis 24
1.2.1.6 References 28
1.2.2 PRE-TERTIARY CONTINENTAL FLOOD BASALTS 30
1.2.2.1 Introduction 30
1.2.2.2 Geological setting 30
1.2.2.3 Petrography and mineralogy 42
1.2.2.4 Petrochemistry 46
1.2.2.5 The Keweenawan reference suite of the North Shore Volcanic Group 60
1.2.2.6 References 74
1.2.3 TERTIARY CONTINENTAL FLOOD BASALTS 78
1.2.3.1 Introduction 78
1.2.3.2 Columbia River Province 78
1.2.3.3 British Isles Province 88
1.2.3.4 Faeroe Islands Province 91
1.2.3.5 Iceland Province 92
1.2.3.6 Greenland Province 96
1.2.3.7 Deccan Traps Province 98
1.2.3.8 Synthesis of major element variations 99
1.2.3.9 Petrogenesis 101
1.2.3.10 References 105
1.2.4 CONTINENTAL RIFT VOLCANISM 108
1.2.4.1 Introduction and review 108
1.2.4.2 Rio Grande rift 109
1.2.4.3 The Taos Plateau Reference Suite 114
1.2.4.4 Isotope chemistry 122
1.2.4.5 Mineral chemistry 122
1.2.4.6 Petrogenesis 128
1.2.4.7 References 130
1.2.5 OCEAN-FLOOR BASALTIC VOLCANISM 132
1.2.5.1 Introduction 132
1.2.5.2 Tectonic setting 133
1.2.5.3 Petrography and mineralogy 134
1.2.5.4 Major element chemistry 139
1.2.5.5 Trace element chemistry 142
1.2.5.6 Isotope chemistry 149
1.2.5.7 Petrogenesis 150
1.2.5.8 Partial melting and the mantle source 155
1.2.5.9 References 157
1.2.6 OCEANIC INTRAPLATE VOLCANISM 161
1.2.6.1 Introduction 161
1.2.6.2 Regional tectonic and temporal setting of the Hawaiian Chain 162
1.2.6.3 Major element chemistry of oceanic intraplate basalts 163
1.2.6.4 Trace element chemistry 168
1.2.6.5 Mineralogy 176
1.2.6.6 Petrogenesis 186
1.2.6.7 Source region chemistry and mineralogy 190
1.2.6.8 References 190
1.2.7 ISLAND ARC BASALTS 193
1.2.7.1 Introduction 193
1.2.7.2 Island arc basalt reference suite 193
1.2.7.3 Review of island arc basalts 204
1.2.7.4 References 212
1.2.8 THE BASALTIC METEORITES 214
1.2.8.1 Introduction 214
1.2.8.2 Reference Suite 216
1.2.8.3 Petrography of meteoritic basalts 216
1.2.8.4 Chemical composition 220
1.2.8.5 Mineral chemistry 222
1.2.8.6 Petrogenesis of meteoritic basalts 229
1.2.8.7 References 233
1.2.9 LUNAR MARE BASALTS 236
1.2.9.1 Introduction 236
1.2.9.2 Regional setting and temporal relations 236
1.2.9.3 Major element chemistry 239
1.2.9.4 Trace element chemistry 242
1.2.9.5 Petrology 254
1.2.9.6 Mineralogy 259
1.2.9.7 Petrogenesis 263
1.2.9.8 Concluding statement 264
1.2.9.9 References 265
1.2.10 LUNAR HIGHLAND BASALTS 268
1.2.10.1 Source regions and time scales of highland volcanism 268
1.2.10.2 Highland reference suite 269
1.2.10.3 Distinction of impact melt-rocks from volcanic rocks 270
1.2.10.4 Petrography of selected LKFM and IKFM samples 271
1.2.10.5 Petrogenesis of lKFM 277
1.2.10.6 Petrogenesis of LKFM 278
1.2.10.7 Conclusions 279
1.2.10.8 References 279
1.2.11 ULTRAMAFIC XENOLITHS IN TERRESTRIAL VOLCANICS AND MANTLE MAGMATIC PROCESSES 282
1.2.11.1 Introduction 282
1.2.11.2 Present study 283
1.2.11.3 Geologic setting of samples 283
1.2.11.4 Pertographic summary 284
1.2.11.5 Mineral chemistry and P-T estimates 287
1.2.11.6 Major element and lithophile trace element chemistry 289
1.2.11.7 Siderophile and volatile element chemistry 297
1.2.11.8 Sr and Nd isotope chemistry 304
1.2.11.9 Oxygen isotope chemistry 306
1.2.11.10 Concluding remarks 307
1.2.11.11 References 307
1.3 PLANETARY COMPARISONS 311
1.3.1 BASALTS AS PROBES OF PLANETARY INTERIORS: CONSTRAINTS FROM MAJOR AND TRACE ELEMENT CHEMISTRY 311
1.3.1.1 Introduction 311
1.3.1.2 Recognition of primary magmas 311
1.3.1.3 Role of planet size 312
1.3.1.4 Major element characteristics of planetary basalt 312
1.3.1.5 Mantle source mineralogy 318
1.3.1.6 Trace elements 321
1.3.1.7 Implications of trace element abundances 326
1.3.1.8 Summary 335
1.3.1.9 References 336
1.3.2 SILICATE MINERALOGY OF PLANETARY BASALTS 340
1.3.2.1 Introduction 340
1.3.2.2 Olivines 340
1.3.2.3 Feldspars 342
1.3.2.4 Pyroxenes 342
1.3.2.5 Pyroxene substitution couples 350
1.3.2.6 Summary and conclusions 353
1.3.2.7 References 354
1.3.2.8 Appendix 354
1.3.3 COMPARATIVE PETROGRAPHY AND COOLING RATES 364
1.3.3.1 Controls on texture 364
1.3.3.2 Textural comparisons 365
1.3.3.3 Quantitative cooling rates 369
1.3.3.4 Implications of textures 370
1.3.3.5 References 370
1.3.4 TEMPERATURES AND GAS FUGACITIES OF PLANETARY BASALTS 371
1.3.4.1 Introduction 371
1.3.4.2 Methods and analysis 371
1.3.4.3 Terrestrial basalts 371
1.3.4.4 Lunar basalts 375
1.3.4.5 Basaltic achondrites 376
1.3.4.6 The redox state of basalt source regions 378
1.3.4.7 Inner solar system basalts 381
1.3.4.8 Summary 382
1.3.4.9 References 382
1.3.5 VOLATILES IN PLANETARY BASALTS: HYDROGEN, CARBON AND SULFUR GAS SPECIES 385
1.3.5.1 Introduction 385
1.3.5.2 Volcanic gases 385
1.3.5.3 Volatiles in basalts 390
1.3.5.4 Water 393
1.3.5.5 Carbon 393
1.3.5.6 Sulfur 395
1.3.5.7 Summary 396
1.3.5.8 References 397
1.4 PRIMARY MAGMAS AND MAGMA EVOLUTION 399
1.4.1 PROCESSES THAT AFFECT BASALTIC MAGMA COMPOSITION 399
1.4.1.1 Introduction 399
1.4.1.2 Crystal fractionation 400
1.4.1.3 Results from some selected studies 401
1.4.1.4 Magma mixing 404
1.4.1.5 Assimilation 405
1.4.1.6 Partial melting 405
1.4.1.7 A comment about use of models for composition-modifying processes 406
1.4.1.8 Conclusions 406
1.4.1.9 References 407
1.4.2 CHARACTERISTICS OF PRIMARY BASALTIC MAGMAS 409
1.4.2.1 Introduction 409
1.4.2.2 Characteristics of primary basalts 410
1.4.2.3 Discussion of primary terrestrial magmas 424
1.4.2.4 Conclusions 428
1.4.2.5 References 429
1.5 CONCLUSIONS 433
1.5.1 HETEROGENEITIES IN INTER- AND INTRAPLANETARY BASALT SOURCE REGIONS 433
1.5.2 SILICATE MINERALOGY OF PLANETARY BASALTS 434
1.5.3 TEMPERATURES, OXYGEN FUGACITY, VOLATILES 434
1.5.4 FACTORS IN BASALT VARIATION 434

 

CHAPTER 2

REMOTE SENSING OF BASALTS IN THE SOLAR SYSTEM

2.1 INTRODUCTION 440
2.2 BASALTS ON SOLAR SYSTEM BODIES 441
2.2.1 Moon 441
2.2.2 Earth 458
2.2.3 Mercury 460
2.2.4 Mars 461
2.2.5 Venus 464
2.2.6 Asteroids and satellites 465
2.3 REMOTE-SENSING TECHNIQUES 470
2.3.1 Orbital gamma-ray spectroscopy 470
2.3.2 Orbital X-ray 474
2.3.3 Visible and near-infrared reflectance spectroscopy 477
2.3.4 Multispectral mapping 481
2.3.5 In Situ analyses 483
2.4 SUMMARY 484
2.5 REFERENCES 485

 

CHAPTER 3

EXPERIMENTAL PETROLOGY OF BASALTS AND THEIR SOURCE ROCKS

3.1 INTRODUCTION 494
3.1.1 Historical developments 495
3.1.2 Generation of basaltic magmas 498
3.1.3 Forward and inverse approach in basalt-source relationships 500
3.1.4 Experimental petrology in a flow diagram for the inverse approach 501
3.2 EXPERIMENTAL PROCEDURES AND INTERPRETATIONS 513
3.2.1 Documentation of experiments 513
3.2.2 Experimental techniques 515
3.2.3 Composition control during experimentation: the container problem 517
3.2.4 Equilibrium and its recognition 519
3.3 TERRESTRIAL ROCKS 523
3.3.1 Source rocks and magmas 523
3.3.2 Phase relationships of peridotite 532
3.3.3 Compositions of liquids from partial melting of peridotite 545
3.3.4 Phase relationships of abundant basalts 556
3.3.5 Phase relationships and petrogenesis of picrites and komatiites 563
3.3.6 Phase relationships and petrogenesis of highly SiO2- undersaturated magmas 564
3.3.7 Petrogenesis of basalts and andesites 567
3.3.8 Does the inverse approach work on Earth? 572
3.4 LUNAR BASALTS 577
3.4.1 Highland basalts 583
3.4.2 Mare basalts 585
3.4.3 Experimental constraints on the bulk composition of the Moon 590
3.5 METEORITIC BASALTS 591
3.5.1 Terminology and brief description of basaltic achondrites 591
3.5.2 Experimental studies 592
3.5.3 Cumulate eucrites 593
3.5.4 Primary or differentiated liquids? 593
3.5.5 The bulk composition of the source regions of eucritic magmas 596
3.5.6 Experimental petrology as a guide to the origins of meteoritic basalts 596
3.6 OTHER PLANETS 597
3.6.1 The composition and petrology of planetary mantles 597
3.6.2 Testing of model mantle compositions 601
3.6.3 Implications of model mantles for basalt genesis 602
3.6.4 Solar system exploration and the inverse approach 603
3.7 OVERVIEW SUMMARY 605
3.8 APPENDIX 609
3.9 REFERENCES 621

 

CHAPTER 4

GEOPHYSICAL AND COSMOCHEMICAL CONSTRAINTS ON PROPERTIES OF MANTLES OF THE TERRESTRIAL PLANETS

4.1 INTRODUCTION 634
4.2 GEOPHYSICAL CONSTRAINTS 634
4.2.1 Geodetic constraints 634
4.2.2 Seismic data 636
4.2.3 Gravity data 637
4.2.4 Other geophysical inputs 637
4.3 COSMOCHEMICAL CONSTRAINTS 638
4.3.1 The overall composition of the solar system 638
4.3.2 Compositional differences among the planets 638
4.4 PLANETARY MODELLING 657
4.4.1 General considerations 657
4.4.2 Planetary models for the compositions of section 4.3.2 660
4.5 MODELS OF THE TERRESTRIAL PLANETS 662
4.5.1 Earth 662
4.5.2 The Moon 666
4.5.3 Mercury 678
4.5.4 Venus 682
4.5.5 Mars 685
4.5.6 The eucrite parent body 689
4.5.7 Galilean satellites 692
4.6 CONCLUSIONS 693
4.7 REFERENCES 695

 

CHAPTER 5

DISTRIBUTION AND MORPHOLOGY OF BASALT DEPOSITS ON PLANETS

5.1 INTRODUCTION 702
5.2 FACTORS GOVERNING ERUPTION MECHANISMS AND BASALTIC VOLCANO MORPHOLOGY 702
5.2.1 Magma ascent and magma rheology 702
5.2.2 Gas loss 706
5.2.3 Discharge rate 709
5.2.4 The lava tube mechanism 710
5.2.5 Topography 711
5.2.6 Effect of water 711
5.2.7 Tectonic control 713
5.2.8 The replenished reservoir model 714
5.3 TERRESTRIAL BASALTIC VOLCANOES 717
5.3.1 Subaerial basaltic volcanism 717
5.3.2 Basaltic volcanism in aqueous environments 727
5.3.3 Volcanic craters 744
5.3.4 Subvolcanic processes and their surface expression 747
5.4 BASALTIC VOLCANISM ON THE MOON 749
5.4.1 Introduction 749
5.4.2 The lunar maria 751
5.4.3 Mare volcanic structures 753
5.4.4 Relationship of mare volcanic features to eruption conditions 759
5.4.5 The filling of the mare basins 760
5.4.6 Nonmare volcanism 762
5.4.7 Summary of lunar basaltic volcanism 763
5.5 BASALTIC VOLCANISM ON MERCURY 764
5.5.1 Introduction 764
5.5.2 Plains units as volcanic units 766
5.5.3 Possible volcanic landforms 768
5.5.4 Summary 772
5.6 BASALTIC VOLCANISM ON MARS 772
5.6.1 Introduction 772
5.6.2 Central constructs 774
5.6.3 Volcanic plains 783
5.6.4 Features of uncertain origin 786
5.6.5 Summary 787
5.7 BASALTIC VOLCANISM ON VENUS (?) 788
5.7.1 Introduction 788
5.7.2 Environmental controls on venusian volcanism 788
5.7.3 Volcanic constructs 789
5.7.4 Summary 789
5.8 SATELLITES AND ASTEROIDS 790
5.8.1 Introduction 790
5.8.2 Io 790
5.9 SUMMARY 792
5.10 REFERENCES 793

 

CHAPTER 6

TECTONICS OF BASALTIC VOLCANISM

6.1 INTRODUCTION 804
6.2 TECTONICS OF ACTIVE BASALTIC VOLCANISM 804
6.2.1 Tectonics of basaltic eruption at plate margins 804
6.2.2 Tectonics of non-plate-margin basalt 829
6.2.3 Tectonics of active volcanism elsewhere in the solar system 847
6.3 TECTONICS OF BASALTIC VOLCANISM ON EARTH IN THE LATTER HALF OF EARTH HISTORY 848
6.3.1 Tectonics of basaltic eruption at plate margins in the past 848
6.3.2 Tectonics of non-plate-margin basalt in the past 859
6.4 TECTONICS OF BASALTIC VOLCANISM ON EARTH IN THE FIRST HALF OF EARTH HISTORY 861
6.4.1 Tectonics of Archean basaltic volcanism 861
6.5 TECTONICS OF BASALTIC VOLCANISM ON OTHER TERRESTRIAL PLANETS 868
6.5.1 Tectonics of basaltic volcanism on the Moon 869
6.5.2 Tectonics of basaltic volcanism on Mars 873
6.5.3 Tectonics of basaltic volcanism on Mercury 878
6.5.4 Tectonics of basaltic volcanism on Venus 881
6.6 TECTONICS OF BASALTIC MAGMA MIGRATION 883
6.7 REFERENCES 887

 

CHAPTER 7

RADIOGENIC AND STABLE ISOTOPES, RADIOMETRIC CHRONOLOGY, AND BASALTIC VOLCANISM

7.1 INTRODUCTION AND GENERAL PRINCIPLES 902
7.1.1 Scope of this section 902
7.1.2 Application of radioactive decay to date and otherwise characterize geological events 904
7.1.3 Trace element systematics and basaltic volcanism 919
7.1.4 Stable isotopes as geochemical tracers in problems of basaltic volcanism 927
7.2 CHRONOLOGIC AND ISOTOPIC STUDIES ON BASALTIC METEORITES 935
7.2.1 Introduction 935
7.2.2 Oxygen isotope results 935
7.2.3 Potential chronologies 937
7.2.4 Review of geochronological data 937
7.2.5 Chemical nature of the eucrite parent body 945
7.2.6 Summary 947
7.3 CHRONOLOGY OF LUNAR VOLCANISM 948
7.3.1 Introduction 948
7.3.2 Technical remarks about the methods 949
7.3.3 Mare basalt ages 953
7.3.4 Interpretation of isotopic data from mare basalts 959
7.3.5 Highlands 968
7.3.6 Basin chronology 971
7.4 THE EARTH 974
7.4.1 Variations in ancient terrestrial basaltic volcanism 974
7.4.2 Sources of terrestrial basalts: isotopic characteristics 987
7.4.3 Genetic relationship between ultramafic rocks and basalts: isotopic and trace element studies 1014
7.4.4 Noble gases as trace elements 1025
7.5 REFERENCES 1031

 

CHAPTER 8

CHRONOLOGY OF PLANETARY VOLCANISM BY COMPARATIVE STUDIES OF PLANETARY CRATERING

8.1 BACKGROUND OF STUDY 1050
8.2 METHODOLOGY AND DEFINITIONS 1054
8.3 CURVE-FITTING PROCEDURES 1063
8.4 EMPIRICAL DETERMINATION OF CRATER PRODUCTION RATES IN THE EARTH-MOON SYSTEM 1069
8.5 EFFECTIVE CRATER PRODUCTION RATES ON THE OTHER PLANETS 1075
8.6 RESULTS: ESTIMATES OF AGES OF VOLCANIC FEATURES ON THE PLANETS 1081
8.7 DISCUSSION OF DATA AND INDIVIDUAL PROVINCES 1086
8.8 COMPARISON OF RESULTS WITH RESULTS OF TECHNIQUES USING SMALL CRATERS 1096
8.8.1 Examples of small, nonimpact craters and associated interpretive problems 1097
8.8.2 Empirical correlation of DL and Cs ages with other ages 1099
8.8.3 Evaluation of DL in context of hypotheses for small-crater origin 1101
8.8.4 Problems of comparing small-crater counts by different investigators 1102
8.8.5 Conclusion 1103
8.9 THE PROBLEM OF UPLAND OR "PREMARE" VOLCANISM 1104
8.10 SUMMARY AND CONCLUSIONS 1107
8.11 APPENDIX 1111
8.12 REFERENCES 1125

 

CHAPTER 9

THERMAL HISTORIES OF THE TERRESTRIAL PLANETS

9.1 INTRODUCTION 1130
9.1.1 Volcanism and thermal history 1130
9.1.2 Chapter outline 1131
9.1.3 Principal conclusions 1132
9.2 HISTORICAL REVIEW 1133
9.3 THERMAL MODEL CALCULATIONS 1135
9.3.1 Equations and parameters 1135
9.3.2 Methods of solution for thermal convection 1137
9.3.3 Thermal history modelling techniques 1140
9.4 PHYSICAL PROPERTIES 1144
9.4.1 Heat sources 1144
9.4.2 Thermal conductivity and thermo-dynamic parameters 1151
9.4.3 Rheology 1157
9.4.4 Adiabatic gradients and phase changes 1162
9.5 PLANETARY THERMAL MODELS 1167
9.5.1 Earth 1168
9.5.2 Moon 1188
9.5.3 Mars 1198
9.5.4 Mercury 1203
9.5.5 Venus 1208
9.5.6 Asteroids 1212
9.6 OVERVIEW AND AFTERTHOUGHTS 1217
9.6.1 Early melting in the planets 1217
9.6.2 The role of thermal convection and plate tectonics in the planets 1218
9.6.3 Degree of global differentiation and recycling 1219
9.6.4 Magma vs. depth and time in the planets 1220
9.6.5 Status of numerical modelling 1220
9.6.6 New measurements that might test models 1221
9.7 REFERENCES 1221

 

CHAPTER 10

IMPLICATIONS OF BASALTIC VOLCANISM FOR THE EVOLUTION OF PLANETARY BODIES

10.1 INTRODUCTION 1238
10.2 ORIGIN AND EARLY EVOLUTION OF THE PLANETS 1238
10.2.1 Sun's formation and early evolution 1238
10.2.2 Solar nebular models; gravitational instability 1239
10.2.3 Dust instability and planetesimal growth hypothesis 1240
10.2.4 Gas instability and giant protoplanet hypothesis 1242
10.2.5 Small body heating and differentiation 1242
10.2.6 Initial energetics of terrestrial planets 1243
10.2.7 Early planet differentiation 1245
10.3 SUBSEQUENT EVOLUTION OF THE PLANETS 1246
10.3.1 The Earth 1246
10.3.2 The Moon 1249
10.3.3 Mars 1250
10.3.4 Mercury 1252
10.3.5 Venus 1253
10.3.6 Galilean satellites 1254
10.4 LEADING INFERENCES 1254
10.4.1 A general model 1254
10.4.2 Variations and exceptions 1256
10.4.3 Consequences for, and constraints from, basaltic volcanism 1258
10.4.4 Outstanding problems and directions for the future 1260
10.5 REFERENCES 1261

 

Locality Index 1265
Subject Index 1273
Plates

 

MICROFICHE APPENDIX

 

INAA Analyses I-2
A-1 Archean Suite I-3
A-2 Keweenawan Suite I-24
Table 1 -- Pyroxenes in North Shore Volcanic Group I-46
Table 2 -- Plagioclases in North Shore Volcanic Group I-51
A-3 Columbia Plateau Suite I-56
A-4 Taos Plateau Suite I-68
A-5 Ocean Floor Suite I-86
Table 1 -- Major Element Abundances II-8
Table 2 -- Trace Element Abundances II-10
Table 3 -- Modal Mineralogy II-11
A-6 Hawaiian Suite II-14
Table 1 -- Suite Description II-15
Table 2 -- Modal Mineralogy II-42
Table 3 -- Major Element Abundances II-48
A-7 Island Arc Suite II-54
A-8 Basaltic Meteorite Suite II-69
Table 1 -- Terrestrial History of Samples II-70
Table 2 -- Classification of Samples by Principal Characteristics II-71
Table 3 -- Separated Clasts & Whole Rock Samples for Analysis II-72
Table 4 -- Stannern Clast Designations II-75
Table 5 -- Pasamonte Clast Designations II-77
Table 6 -- INAA Analyses of Eucrite Clasts & Matrix Samples II-81
Figure 1 -- Rare-Earth Element Data II-84
References II-87
A-9 Lunar Mare Basalt Suite II-88
A-10 Lunar Highland Basalt Suite II-91
A-11 Ultramafic Suite II-94
A-12 Planetary Mineralogy (cards III-V) III-1
Table 1 -- Olivines III-2
Table 2 -- Feldspars III-38
Table 3 -- Pyroxenes IV-95