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The Observational Determination of 
Orbits 

 
 
 In the last chapter we saw how to find the position on the sky of a object 
given the parameters that describe the orbit of the object. That is about half of the 
fundamental problem of celestial mechanics. The other half is the reverse. 
Namely, given some observational information about the motion of the object, 
one would like to determine the orbital elements that specify the motion. This, 
and Chapter 6, enable one to predict the future location and motion of the object. 
These two parts of the description of orbital motion constitute the solution of the 
primary problem of celestial mechanics. 
 
 It is clear from what we have done in Chapters 4 and 5 that the solution of 
the equations of motion for n-bodies requires 6n constants of integration. For two 
bodies half of the constants are involved in describing the motion of the center of 
mass, while the remaining six specify the location of a particle in its orbit and the 
orientation of that orbit with respect to a specified coordinate system. Thus, for 
objects in orbit about the sun we have only the six orbital elements that represent 
the six linearly independent constants required for the solution of the equations of 
motion. In order to determine these six linearly independent orbital elements, we 
will need six linearly independent pieces of information. There are many different 
forms that this information may have. For example, one might have the position 
and velocity at some instant in time. These two vectors clearly provide six 
independent pieces of information as they constitute the classical initial values for 
the integration of the Newtonian equations of motion. However, they are not the 
quantities traditionally available to the astronomer. Classically, one observes the 
position of an object as seen projected against the celestial sphere. Such an 
observation is comprised of two angular coordinates and the time of observation. 
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This represents two linearly independent pieces of information so that one would 
need three such observations in order to determine the orbital elements. In 
principle, one might also be able to measure the radial velocity with respect to the 
earth, but this is only one additional independent piece of information. Thus, if 
one had two positions and the radial velocities of the object at those positions, the 
problem would be determined.  
 
 In practice, all observations are subject to error and this will be reflected in 
errors in the orbital elements. Therefore, the accurate determination of orbital 
elements will make use of a large number of observations combined in such a way 
as to reduce the resultant error of the final result. The combination of the 
observations usually employs some principle such as Legendre's principle of least 
squares or more contemporarily, the related maximum likelihood principle. 
However, all of these methods require the relationship between the orbital 
elements to be determined and the particular type of observations to be specified. 
Since this relationship is, in general, nonlinear, we shall consider several different 
and specific cases. As an example and for traditional reasons, we shall consider 
the problem of determining the orbital elements for an object in orbit about the 
sun. However, the approaches are much more general and are applicable for 
determining the orbits of objects revolving about most any object where the 
potential is that of a point mass. 
 
7.1  Newtonian Initial Conditions 
 
 In Chapters 3 and 5 we found that the two body problem will have two 
integrals of the motion, the angular momentum and the total energy. Integrals of 
the motion are useful for our purpose since they are indeed constant for all parts 
of the orbit and therefore apply as constants for all possible observations. They 
represent constraints that all observations must satisfy, and they can be directly 
related to the orbital elements. Therefore we will begin by discussing what they 
can tell us about positions and velocities and vice versa. Let us assume that we 
know a position and velocity at some instant in time. This is essentially the initial 
value information that would be needed for the direct solution of the Newtonian 
equations of motion. The definition of angular momentum requires that 
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&rr ˆsinvrmLrr θ==×    ,                                 (7.1.1) 
 
and the angular momentum is an integral of the motion. From the solution of the 
two body problem [see equations (6.2.12), and (6.2.14)] and the properties of an 
ellipse we know that 
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If we combine this with the expression for the velocity of an object moving in a 
central force field [i.e. equation (5.4.11)], we get 
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This is often called the energy integral since it is basically derived from the 
conservation of energy. Older books on celestial mechanics refer to it by the old 
Latin name vis viva Integral. It immediately supplies us with a value for the semi-
major axis. 

)rvG2(rGa 2−= MM        ,                        (7.1.4) 
which is one of the orbital elements we seek. 
  
 Now we may obtain the value of the orbital eccentricity e by using equation 
(7.1.1) to replace the value of (L/m) in equation (7.1.2) and obtain 
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With the semi-major axis, a, and the orbital eccentricity, e, we can turn directly to 
the equation for the orbital ellipse (6.2.14) to obtain the cosine of the true anomaly 
as  
              .  (7.1.6) θ−θθ−=−−=ν 22/1222 cossin)cose(1)e1)(r/a(cose
 
The right hand side of equation (7.1.6) is obtained with the aid of equation (7.1.7). 
The proper quadrant for ν may be found from the sign of the radial velocity, 

, which we get by differentiating equation (6.2.14) with respect to time, 
noting that  can be obtained from the areal velocity [see equations (5.2.2, 3)] as 
L/mr

ν= cosvr&
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2, and that P may be eliminated with the aid of equations (7.1.1) and (7.1.2) so 
that 
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 The true anomaly ν and eccentricity, e, allow us to directly calculate the 
eccentric anomaly (E) from equation (6.2.27) and, by means of Kepler's Equation 
[equation (6.2.25)], the mean anomaly (M). The mean anomaly, in turn, allows the 
calculation of the time of perihelion passage since the mean daily motion (n) 
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depends only on the period which, in turn, depends only on the semi-major axis so 
that 

)EsineE(a)Ga(tn)EsineE(tT 2/1
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Here tl refers to the time at which the observations of the position and velocity are 
made. Thus equations (7.1.4), (7.1.7), and (7.1.8) determine the shape of the orbit 
and the orbital element that locates the object in its orbit. The information that has 
been used to determine these orbital elements is just the magnitude of the angular 
momentum and energy and the angle between the position and velocity vector. 
These are three linearly independent pieces of information and they determine 
three orbital elements. Clearly the energy and angular momentum determine the 
shape and size of the orbit as they are integrals of the motion and are constants for 
all points in the orbit. Taken together with the angle between the position and 
velocity vectors, they are sufficient to locate the particle in that orbit.  
 
 The remaining three orbital elements specify the orientation of the orbit 
and must be determined from information uniquely related to its orientation. The 
angular momentum vector always points normal to the orbit and, being an integral 
of the motion, is sufficient to specify the orbit's orientation. A unit vector pointing 
in the direction of the angular momentum vector contains all the information 
necessary to specify the orbital orientation. It can be specified in terms of the 
position. and velocity vectors as 
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Thus, the components of that vector in any particular coordinate system will 
specify the orientation of the orbit in that coordinate system. The components in 
the ecliptic coordinate system, yield two of the remaining three orbital elements 
from  
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The remaining orbital elements can be determined by considering a unit vector 

pointing toward the ascending node and its scalar and vector products with the 
position vector r which are 
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The x-component of the vector cross product is 
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which along with the scalar product yields 
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These two equations are sufficient to unambiguously determine (ν + o) and hence 
the last remaining orbital element, the argument of perihelion o. 
 
 Thus we have seen how, given what amount to initial conditions of the 
motion, can be used to determine the orbital elements. It is important 
to recognize the type of information available and which orbital elements are 
constrained by that information. Magnitudes of position and velocity vectors 
specify the magnitudes of the orbital energy and angular momentum. Since these 
are integrals of the motion, they will determine the size and shape of the orbit. 
The constancy of the angular momentum vector in space will essentially 
determine the orientation of the orbit. A combination of both is required to locate 
the object is its orbit. All methods of determining orbital elements will utilize the 
observed information in this way. While astronomers rarely are able to determine 
position and velocity vectors at a given instant, most methods of orbit 
determination rely on estimating this information from the information that is 
available. 
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7.2  Determination of Orbital Parameters from Angular positions Alone 
 
 The traditional problem of celestial mechanics involves the determination 
of the orbital elements given the angular position on the celestial sphere at various 
times. This information takes the form of pairs of celestial coordinates in some 
known coordinate system. Since there are six constants of the motion, we will 
need at least six independent observational constraints or three observations of 
coordinate pairs. To understand conceptually how this can work, let us consider a 
method that dates back at least to Johannes Kepler. 
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 a. The Geometrical Method of Kepler 
 
 This method determines the planetary orbit with respect to the earth's 
orbit. In away this is true for all methods since the scale of the solar system is set 
by the value of the astronomical unit which is generally assumed to be known. 
However, it is interesting that this method makes no use of physics and only 
assumes that both the earth and planet are in orbit about the sun. Indeed, this is the 
method by which Kepler discovered his laws of motion. One begins by 
determining the sidereal period of the planet, the time required for the planet to 
return to the same point with respect to the stars as seen in an inertial frame. This 
is done by measuring the synodic period directly. The synodic period is simply 
the length of time required for the planet to return to the same place in the sky as 
seen from the earth (see Figure 7.1). 
 

 
Figure 7.1 shows the orbital motion of a planet and the earth moving 
from an initial position with respect to the sun (opposition) to a 
position that repeats the initial alignment. This associated time 
interval is known as the synodic period of planet p with respect to 
the earth. The concept of a synodic period need not be limited to the 
earth and another planet, but may involve any two planets. 
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 Let this period of time be Ps. Now the angular distance traveled by the 
earth during this time will just be (2π/P⊕)×Ps where P⊕ is the sidereal period of 
the earth. During the same interval of time the planet will have traveled an 
angular distance (2π/Pp)×Ps. However, since the planets have returned to the same 
relative position in the sky with respect to the sun, the angular difference in the 
distance traveled must be 2π. Therefore 
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     .                                         (7.2.1) 

 
Figure 7.2 shows the position of the earth at the beginning and 
end of one sidereal period of planet p. If we assume that the 
distance of the earth to the sun as well as the three angles γi 
are known at each position, then the determination of the 
remaining parts of the quadrilateral, including the distance to 
the planet, is a matter of plane trigonometry. 
 

 Thus careful observation of the synodic period will lead to the 
determination of the sidereal period of the planet. While it is true that elliptic 
orbits will cause difficulties with this approach, it is possible to wait a number of 
synodic periods until the planet returns arbitrarily close to a given position in the 
sky and then the method will give the correct result in spite of the orbital 
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eccentricity. While this is not strictly an angular position, it is the measurement of 
a single item, the synodic period, which then specifies the sidereal period.  
 
 Now simply observe the position of the planet at the beginning and end of 
one sidereal period. It will be seen against the stellar field from two different 
vantage points as the sidereal period of the planet will not in general be 
commensurate with that of the earth. Thus the planet will lie at the vertex of a 
quadrilateral formed by the planet, sun and two positions of the earth (see Figure 
7.2). Assuming that the orbit of the earth is known, then two sides and three 
angles of the quadrilateral are known. This enables the remaining sides and 
diagonals to be determined. If this procedure is carried out throughout the entire 
orbit of the planet, its entire orbit with respect to the earth can be measured. If the 
detailed shape of the orbit is known, then clearly the orbital elements that describe 
the orbit are specified. Much more than the minimum three pairs of observations 
have gone into this determination, but much less has been assumed. The two-body 
orbital mechanics that gives rise to the six constants of motion and even allows us 
to say what minimum amount of information is necessary has not even been used. 
Let us now consider a method that integrates Newtonian mechanics into the 
geometrical approach of Kepler. 
 
 
 b.  The Method of Laplace 
 
 The basic approach of Laplace was to write the equations of motion in 
terms of the change of a vector from the earth to the object and then to separate 
the vector into its magnitude and its direction cosines. It is the changes in these 
direction cosines that essentially constitute the angular measurements that 
determine the orbital elements. The entire procedure estimates the values for the 
position and velocity vectors at some instant in time. One then can use the 
procedure in Section 7.1 to get the orbital elements. This is the schematic 
procedure that we will follow, but to begin we shall make the following 
definitions for the vectors involved in the development: 
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 Now let us represent the components of the vector p

r
 from the earth to the 

object by their direction cosines specified in terms of the equatorial coordinates of 
the object so that 
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The vector  is simply a unit vector pointing from the earth to the object. I have 
deliberately continued to use the older notation for the geocentric distance ρ 
rather than the currently accepted symbol ∆ as the latter has too widely an 
accepted interpretation as the finite difference operator. 

λ
r

 
 The radial equations of motion for both the object and the earth are: 
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where  
⊕+ρ= rrp
rrr      .                                        (7.2.5) 

If we use this to eliminate  pr
r  from the first equation of motion we get 
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and using this result we can eliminate the earth's acceleration from its equation of 
motion and arrive at  
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Explicitly differentiating the vector ρ

r
 we get 
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which when substituted into equation (7.2.7) yields 
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Regrouping the terms so that the time derivatives of ρ are collected we get 
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Except for these time derivatives and pr

r , all the parameters of equation (7.2.10) 
are known. Remember this is a vector equation so that it constitutes three scalar 
equations for and ρ. The right hand side involves  k  and the heliocentric 
radius vector to the earth 

ρρ &&& ,

⊕r
r , which is presumed to be known for all the times of 

the observations. The parameter rp may be expressed in terms of ρ, r⊕, and the 
angle ψ from the law of cosines as 
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However, this angle can be obtained from the scalar product of pr

r and as λ
r
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 Thus, equations (7.2.10-7.2.12) form a closed system of equations for ρ 
and its first two time derivatives. This must be solved numerically and by iteration 
due to the nonlinearity of equations (7.2.11), and (7.2.12). Of course the solution 
depends on having values of λ

r
 and its time derivatives. 

 
 For these time derivatives we turn to the observations. Each positional 
observation consists of a pair of angular coordinates (α,δ) at some particular time 
ti. These angular coordinates are sufficient to generate all the components of λ

r
 

from equation (7.2.3). Thus three temporal measurements provide three values of 
the vector . Now expand this vector in a Taylor series in time about the first 
observation so that 
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Thus, for the three successive times of observations we can write 
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These constitute three linear algebraic vector equations in λ

r
 and its time 

derivatives. Their solution need only be done once per problem as they provide 
the constants necessary for the iterative solution of equations (7.2.10 - 7.2.12) for 
ρ and its time derivatives. However, the solution of these equations is where most 
of the error in the final solution arises. If the observations are taken too close 
together, then their linear independence becomes weak and their values 
(particularly for the second time derivative) small to indeterminate. Simply, too 
small a section of the orbit is sampled to provide an accurate determination of the 
orbital elements. If they are taken too far apart in time, then the validity of the 
Taylor series becomes suspect. In practice, one would use a number of 
observations and perhaps a longer Taylor series to ensure that the first three terms 
were accurately determined. Having assured the accurate determination of λ

r
 and 

its derivatives one can turn to the solution of equations (7.2.10-7.2.12) and obtain 
values for ρ and its time derivatives. These and λ

r
 determine the position vector 

for the object in heliocentric coordinates and its time derivative yields the velocity 
vector for the object, all at the time of the first observation so that 
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We may now use the methods described in the previous section to find the actual 
orbital elements. Let us turn to a rather more elegant method that avoids many of 
the problems of the method of Laplace. 
 
 c.  The Method of Gauss 
 
 While the method of determining orbital elements devised by Laplace is 
conceptually straightforward, it tends to produce poor initial orbital elements. The 
reason for this lies in the approximation for the temporal behavior of the radius 
vector ρ

r
 from the earth to the object. The Taylor series approximation used to 

obtain derivatives of ρ
r

 will generally give uncertain values for those derivatives, 
which, because of the nonlinearity of the problem, yield poor values for the 
orbital elements. Another approach to the problem, due to Gauss, while more 
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complicated, usually produces more accurate results. The reason is that the 
method of Gauss makes approximations to the dynamics of the motion but treats 
the geometry of the observations in a precise manner. The error propagation of 
this approach is generally less unstable than that of the method of Laplace. 
However, due to the detailed complexity of the method, we will only review the 
conceptual approach here and refer the student to Danby7 or Moulton8 for the 
details. 
 
 Gauss begins by taking advantage of the fact that motion of any object 
about the sun (or any two body problem) takes place in a plane. Thus it is possible 
to represent the radius vector from the sun to the object in question for any of the 
three observations as a linear combination of the other two so that 
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These represent three vector equations for the values of pr
r , but they are not 

linearly independent. However, if we introduce the fact that the observations are 
made from a moving platform (i.e. the earth) by making use of equation (7.2.5), 
we can generate three vector equations for the geocentric radius vector of the 
object  and these are linearly independent. These vector equations are iρ

r
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If the Cjs which determine that fraction of each vector required to produce the 
third were known then everything on the right-hand side of equations (7.2.17) 
would be known and we could solve for three values of the geocentric radius 
vectors . Remember that only the magnitude of iρ

r
iρ
r is unknown as the direction 

cosines are the observations as given in equation (7.2.3). With those three values 
and the three heliocentric radius vectors of the earth ir⊕

r we can calculate three 
values for the heliocentric radius vector of the object pirr . Given three values for 
the heliocentric radius vector, there are a number of ways to proceed to obtain the 
orbital elements. It would appear that there is more information here than is 
necessary as the three heliocentric radius vectors have nine independent 
components where only six are required. However, only two of the radius vectors 
can be regarded as being truly linearly independent. But that is enough. Gauss 
himself gave a complicated method involving Kepler's equation for obtaining the 
elements from the three heliocentric radius vectors. Others have used the three 
heliocentric radius vectors to generate 2pr&

r
which, when coupled with  reduces 2pr

r
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the problem to the initial value problem that we discussed in Section 7.1. Thus all 
that remains is to find an expression for the Cjs. 
 
 Consider taking the vector cross product of equation (7.2.16) with  to 
get 
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The vector points normal to the orbit and could be used to determine the orbital 
elements associated with the orientation of the orbit once the 

l̂

jpr
r 's are known. The 

scalar coefficients of  are the areas of the triangles formed by l̂ pirr  and  (see 
Figure 7.3). Thus, the C

jpr
r

ks are given by  
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where Aij is the area of the triangle SPiPj . If the area of the triangle were the area 
of the orbital sector enclosed by pirr  and jpr

r  then Kepler's second law would 
guarantee that Ck would simply be given by the ratio of the appropriate time 
interval between observations so that 
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Here the linear dependence of the three heliocentric radius vectors is clearly 
displayed as C2 = [C3/Cl] .However, since we only need two heliocentric radii to 
solve the problem, we may reduce the number of equations in (7.2.17) to just two 
which will then be linearly independent. 
 
 The complicated part of the method of Gauss is involved in calculating 
corrections to the triangular area so that it will approximate the sector. Since the 
corrections appear both in Aij and Akj they will tend to cancel to first order and so 
need not be terribly accurate. This clearly demonstrates the cleverness of Gauss 
and the reason for the superiority of his method to that of Laplace. The truncation 
errors of the Taylor series for the time derivatives of ρ enter directly into the 
determination of the orbital elements. However, the approximation of Gauss is in 
the geometric representation of the orbital motion of the object and enters only in 
the second order. Even here, by following the detailed series expansions given by 
Danby7 or Moulton8, one can generally reduce the error in the Cks and hence the 
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orbital elements to values consistent with the errors of observation. From a rather 
protracted argument Danby7 gives the following expressions for the two linearly 
independent Cis: 
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Figure 7.3 shows a section of the orbit of an object revolving 
about the sun. The object is observed at three points Pi in its orbit 
and the method of Gauss determines the three heliocentric radius 
vectors pirr  .The area Aij is the area of the triangle made from the 
heliocentric radius vectors pirr . 

 
 The improvements in the estimations of the Cis involve information about 
the orbit in the form of the factors of , as they must, because they 
involve the corrections required to go from the orbital sectors bounded by the 
heliocentric radius vectors to the triangles that they form. Danby

)r6/k( 2
2

2

7 gives an 
improved method due to Gibbs which provides a somewhat more accurate form of 
the approximation, but the concept is the same. 
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7.3  Degeneracy and Indeterminacy of the Orbital Elements 
 
 Before leaving the discussion of orbital elements, I would like to 
emphasize further that the equations of celestial mechanics are nonlinear. Of the 
many problems this exacerbates, one is the determination of the orbital elements 
for the object. Occasionally two of the orbital elements become redundant or 
indeterminate depending from which end of the two body problem one is starting. 
For a circular orbit clearly there is no perihelion or point of closest approach. 
Therefore, there can be no time of perihelion passage. Similarly if the orbital 
inclination is zero, the orbital plane is co-planar with the plane that defines the 
coordinate frame and there will be no line of nodes. In this instance the longitude 
of the ascending node is undefined. One may define the problem out of existence 
by simply taking the passage of the first point of Aries or the vernal equinox as 
the reference point for measuring time and the true anomaly. If the inclination is 
zero and the orbit elliptical, one could simply measure the argument of perihelion 
from the vernal equinox and have a perfectly well defined orbit, and no trouble 
would be encountered in locating the object in the sky. 
 
 However, in the event that one is determining the orbital elements from 
observation, there is no advanced information regarding the pathology of the 
solution. If the inclination is small, the error in the longitude of the ascending 
node Ω will be large. Similarly, should the eccentricity prove to be very small, the 
error in the argument of perihelion will be large, so that the time of perihelion 
passage is poorly known. These errors propagate in a highly nonlinear way and 
one must be ever mindful of them. The problems caused by a low value of the 
inclination are not fundamental but result from an unfortunate choice of the 
coordinate system. They can be eliminated by choosing a different coordinate 
frame in which to do the calculations. However, the problems are real and will 
return upon subsequent transformation to the original coordinate frame. The 
problems introduced by circular orbits are more fundamental as they result from a 
degeneracy of the orbit itself, and that cannot be transformed away. One can take 
some comfort from the fact that an uncertain location of the point of perihelion 
does not mean that the location of the object in its orbit will be uncertain since 
that error is usually compensated by an opposite error in the time of perihelion 
passage. The errors in the orbital elements will not be linearly independent so that 
the net result in locating the object in its orbit will not necessarily be serious. It is 
better under these conditions to measure the time in the orbit from some well 
determined location such as the vernal equinox.  
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 In this chapter we have seen how to determine the orbital elements of an 
object from observational information regarding its motion. This constitutes the 
second part of the classical celestial mechanics problem of describing the motion 
of one object about another. In practice, the calculation of precise orbital elements 
involves many additional practical details concerned with both observations and 
the theory, but the overall approach is roughly that described here. There are a 
number of alternative approaches to finding the orbital elements. Indeed, is said 
that Gauss devised some thirteen different schemes for his doctoral thesis. 
However, the information content of three sets of angular measurements or the 
equivalent is always required and the details concern only the devoted 
practitioner. In the previous chapter we used the elements to predict the motion of 
the object on the sky. Thus, the two pieces can be put together to predict the 
motion of an object on the basis of observations of its motion. This is certainly the 
classical task of any science -that is, to predict the future behavior of the physical 
world from knowledge of its current behavior. This was a great triumph for 
Newtonian mechanics in the l7th and l8th centuries and indeed for science itself. 
The mathematicians and philosophers who came after Newton developed this 
elegant determinism to deal with much more formidable problems than the two 
body problem. For the remainder of the book we shall look at some of their 
successes and some of the remaining problems. 
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 Chapter 7: Exercises 
 
1. Find the altitude, azimuth, Right Ascension, and Declination of the planet 

Venus as seen from Columbus Ohio at 9:00 PM EST February 10, 1988. 
 
 Given the orbital elements: 
 

a = 0.7233316 AU 
e = 0.006818 - 0.00005 T 
l = 81o 34' 19" (on Jan 0.5, 1950) 
i =  3 o  23' 37" .1 +   4".5 × T 
P = 0.6151856 yr. = 224.701 days 
Ω = 75 o  47' 01" + 3260" × T 
ϖ= 130 o 09' 08" + 5065" × T 
T = (67 + Date/365.25)/100 

 
2. With what geocentric velocity must an artificial satellite be launched 

horizontally from the earth in order that its apogee distance from the earth's 
center is 60 earth radii (approximately the moon's distance)? What will be 
the orbital eccentricity and the orbital period? Ignore air resistance and the 
gravitational effects of other bodies in the solar system. 

 
3. You plan a trip to Venus. Assume that the orbits of the earth and Venus are 

circular and co-planar. You will launch your ship from the earth in a 
direction directly opposite to the earth's orbital motion so that spacecraft has 
velocity V with respect to the sun when it is "clear of the earth". Note that  
V < VE (the earth's orbital speed) and the ship is at its aphelion point at 
launch. We desire the perihelion point to be at the orbit of Venus                 
(a = 0.723AU). What are the semi-major axis (ar) and the eccentricity (er) of 
the spacecraft's transfer orbit in terms of V? What is the orbital period of the 
spacecraft? What is the travel time to Venus and where should Venus be in 
the sky at the time of launch in order to ensure its presence when you 
arrive? 
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4. If the heliocentric Cartesian coordinates (i.e., the origin is at the sun, the x-
axis points toward the vernal equinox, and the z-axis is normal to the 
ecliptic plane) of a certain comet on November 26.74, 1910 were: 

 
Pr = [(+2.795526), (+1.399919), (0)]  AU 

     
      and, 

o = 267E 16' 36" .6 
    Ω = 206E 40' 11" .8    
         i =   18E 29' 41" .1   , 
 
 find the heliocentric coordinates on January 0.5, 1986. Find the altitude and 

azimuth as seen from Cleveland Ohio at 7:00AM EST. Ignore the 
difference between ET and UT. 

 
5. Given the heliocentric equatorial position and velocity vectors of an object 

in orbit about the sun to be 
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   , 

 
 where the units of time and distance are years and astronomical units. Find 

the position of the object two years later. List specifically all assumptions 
you make and describe clearly the approach you took to the problem. 
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