
ASTRONOMY & ASTROPHYSICS APRIL I 2000, PAGE 85

SUPPLEMENT SERIES

Astron. Astrophys. Suppl. Ser. 143, 85–109 (2000)

The NASA Astrophysics Data System: Architecture

Alberto Accomazzi, Guenther Eichhorn, Michael J. Kurtz, Carolyn S. Grant, and Stephen S. Murray

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, U.S.A.

Received September 1; accepted September 3, 1999

Abstract. The powerful discovery capabilities available in
the ADS bibliographic services are possible thanks to the
design of a flexible search and retrieval system based on
a relational database model. Bibliographic records are
stored as a corpus of structured documents containing
fielded data and metadata, while discipline-specific knowl-
edge is segregated in a set of files independent of the bib-
liographic data itself. This ancillary information is used
by the database management software to compile field-
specific index files used by the ADS search engine to re-
solve user queries into lists of relevant documents.

The creation and management of links to both internal
and external resources associated with each bibliography
in the database is made possible by representing them as
a set of document properties and their attributes. The res-
olution of links available from different locations has been
generalized to allow its control through a site- and user-
specific preference database. To improve global access to
the ADS data holdings, a number of mirror sites have been
created by cloning the database contents and software on
a variety of hardware and software platforms.

The procedures used to create and manage the
database and its mirrors have been written as a set
of scripts that can be run in either an interactive or
unsupervised fashion. The modular approach we followed
in software development has allowed a high degree of
freedom in prototyping and customization, making our
system rich of features and yet simple enough to be easily
modified on a day-to-day basis.

We conclude discussing the impact that new datasets,
technologies and collaborations is expected to have on the
ADS and its possible role in an integrated environment of
networked resources in astronomy.

The ADS can be accessed at:
http://adswww.harvard.edu

Key words: methods: data analysis — astronomical data
bases: miscellaneous — publications: bibliography

Send offprint requests to: A. Accomazzi,
e-mail: aaccomazzi@cfa.harvard.edu

1. Introduction

The Astrophysics Data System (ADS) Abstract Service
was originally designed as a search and retrieval system
offering astronomers and research librarians sophisticated
bibliographic search capabilities. Over time, the system
has evolved to include full-text scans of the scholarly astro-
nomical literature and an ever-increasing number of links
to resources available from other information providers,
taking full advantage of the capabilities offered by the
emerging technology of the World-Wide Web (WWW).

As new data and functionality were incorporated in the
ADS, the design of its system components evolved as well,
driven by the desire to strike a balance between simplicity
in the operation of the system and richness in its fea-
tures. Over time, we favored design approaches promising
long-term rewards over short-term gains, within the lim-
its allowed by our resources. The approach we followed in
software development has always been very pragmatic and
data-driven, in the sense that specialized software compo-
nents were designed to work efficiently with the existing
datasets, rather than attempting to use general-purpose,
monolithic software packages.

This paper gives an overview of the architecture of
the Astrophysics Data System bibliographic services and
discusses in detail the design of the underlying data struc-
tures and the implementation of its key software compo-
nents. In conjunction with three other ADS papers in this
volume, it is intended to give a complete description of the
current state and capabilities of the ADS. An overview
of the history and current use of the system is given in
Kurtz et al. (2000) (OVERVIEW from here on); details
on the datasets in the ADS, their creation and mainte-
nance is given in Grant et al. (2000) (DATA); a complete
description of the ADS search engine and its user interface
is given in Eichhorn et al. (2000) (SEARCH).

Section 2 discusses the methodological approach used
in the management of bibliographic records, their rep-
resentation in the system, and the procedures used for
data exchange with our collaborators. Section 3 describes
the structure of the index files used by the ADS search

86 A. Accomazzi et al.: The NASA ADS: Architecture

engine, the implementation of the procedures that create
them, and the use of discipline-specific knowledge to im-
prove search results. Section 4 details the design and im-
plementation of general procedures for the creation and
management of properties associated with bibliographic
records, and their use in the creation of links to internal
and external resources. Section 5 discusses the set of pro-
cedures used to clone the ADS bibliographic services to
the current mirror sites and the level of system indepen-
dence necessary for their operation. In Sect. 6 we describe
how the recent developments in technology and collabo-
rations among astronomical data centers may affect the
evolution of the ADS.

2. Creation of bibliographic records

The bibliographic records maintained by the ADS project
consist of a corpus of structured documents describing
scientific publications. Each record is assigned a unique
identifier in the system and all data gathered about the
record are stored in a single text file, named after its iden-
tifier. The set of all bibliographic records available to the
ADS is partitioned into four main data sets: Astronomy,
Instrumentation, Physics and Astronomy Preprints
(DATA). This division of documents into separate
groups reflects the discipline-specific nature of the ADS
databases, as discussed in DATA and Sect. 3.2.

Since we receive bibliographic records from a large
number of different sources and in a variety of formats
(DATA), the creation and management of these records
require a system that can parse, identify, and merge bib-
liographic data in a reliable way. In this section we de-
scribe the framework used to implement such a system
and some of its design principles. Section 2.1 details the
methodology behind our approach. Section 2.2 describes
the file format adopted to represent the bibliographic
records. Section 2.3 outlines the procedures used to auto-
mate data exchange between our system and our collab-
orators. Details about the pragmatic aspects of creating
and managing the bibliographic records are described in
DATA.

2.1. Methodology

When the ADS abstract service was first introduced to
the astronomical community (Kurtz et al. 1993), the sys-
tem was built on bibliographic data obtained from a single
source (the NASA STI project, also known as RECON)
and in a well-defined format (structured ASCII records).
The activity of entering these data into the ADS database
consisted simply in parsing the individual records, identi-
fying the different bibliographic fields in them, and refor-
matting the contents of these fields into the ones used in
our system. Bibliographical records were created as text

files named after STI’s accession numbers (DATA), which
the project used to uniquely identify records in the system.

As the desire for greater inter-operability with other
data services grew (OVERVIEW), the ADS adopted the
bibliographic code (“bibcode” from here on) as the unique
identifier for a bibliographic entry (DATA). This per-
mitted immediate access to the astronomical databases
maintained by the Strasbourg Data Center (CDS), and
allowed integration of SIMBAD’s object name resolution
(Egret & Wenger 1988) within the ADS abstract service
(OVERVIEW).

As more journal publishers and data centers became
providers of bibliographic data to our project, a unified
approach to the creation of bibliographic records became
necessary. What makes the management of these records
challenging is the fact that we often receive data about the
same bibliographic entry from different sources, in some
cases with incomplete or conflicting information (e.g. or-
dering or truncation of the author list). Even when the
data received is semantically consistent, there may be dif-
ferences in the way the information has been represented
in the data file. For instance, while most journal pub-
lishers provide us with properly encoded entities for ac-
cented characters and mathematical symbols, the legacy
data currently found in our databases and provided to us
by some sources only contain plain ASCII characters. In
other, more subtle and yet significant cases, the slightly
different conventions adopted by different groups in the
creation of bibcodes (DATA) make it necessary to have
“special case” provisions in our system that take these
differences into account when matching records generated
from these sources.

The paradigm currently followed for the creation of
bibliographic records in our system is illustrated in Fig. 1.
The different action boxes and tests displayed in the di-
agram represent modular procedures, most of which have
been implemented as PERL (Wall et al. 1996) software
modules. More details about each of the software com-
ponents can be found in DATA.

As the holdings of the ADS databases have grown over
time, additional metadata about the literature covered in
our databases has been collected and is currently being
used by many of our software modules for a variety of
tasks. Among them it is worth mentioning two activities
which are significant in the context discussed here:

1) Identification of publication sources. This is the
activity of associating the name of the publication with
the standard abbreviation used to compose bibliographic
codes, and allows us to compute a bibcode for each record
submitted to our system.

2) Data consistency checks. For all major serials and
conference series in our databases, we maintain tables cor-
relating the volume, issue, and page ranges with publi-
cation dates. We also have recently started to maintain
“completeness” tables describing in analytical form what
range of years or volumes are completely abstracted in our

A. Accomazzi et al.: The NASA ADS: Architecture 87

INPUT RECORD PARSE

SOURCE-SPEC.
PARSING RULES

AND DEFINITIONS

IDENTIFY
PUBLICATION

PUBLICATION

 TABLES
IDENTIFICATION

 PUBLICATION
 A

 ?

 IS

JOURNAL
DATA
TABLES

 CONSISTENT
 INFORMATION

COMPOSE
BIBCODE
TEMPLATE

 ERROR

 ERROR

YES

YES YES

NONO

 FOUND
BIBCODE
 IN DB?

 DO
RECORDS
MATCH?

APPEND NEW
DATA TO
RECORD

CREATE
NEW

RECORD

IS DB
COMPLETE
FOR THIS

PUBL.?

DATABASE
COMPLETENESS

TABLES

A

Fig. 1. Paradigm used for the creation of bibliographic records
in the ADS

system for each publication. This allows us to flag as er-
rors those records referring to publications for which the
ADS has complete coverage, but which do not match any
entry in our system. The availability of this feature is par-
ticularly significant for reference resolution, as discussed
later in this paper.

2.2. Data representation

From the inception of the ADS databases until recently,
each bibliographic record has been represented as a single
entity consisting of a number of different fields (e.g. au-
thors, title, keywords). This information was stored in the
database as an ASCII file containing pairs of field names
and values. While this model has allowed us to keep a
structured representation of each record, over the years
its limitations have become apparent.

First of all, the issue of dealing with multiple records
referring to the same bibliographic entry arose. As previ-
ously mentioned, while much of the information present
in these records is the same, certain fields may only ap-
pear in one of them (for example, keywords assigned by
the publisher). Therefore the capability of managing bib-
liographic fields supplied by different sources became de-
sirable, which could not be easily accomplished with the
file format being used.

Secondly, the problem of maintaining ancillary infor-
mation about a particular bibliographic entry or even an
individual bibliographic field surfaced. Information such
as the time-stamp indicating when a bibliographic entry
was created or modified, which data provider submitted
it, and what is the identifier assigned to the record by
the publisher can be used to decide how this data should
be merged into our system or how hyperlinks to this re-
source should be created. Even more importantly, it is
often necessary to attach semantic information to individ-
ual records. For instance, if keywords are assigned to a

particular journal article, it is important to know what
keyword system or thesaurus was used in order to effec-
tively use this information for document classification and
retrieval (Lee et al. 1999).

Thirdly, the issue of properly structuring the biblio-
graphic fields had to be considered. Some of these fields
contain simply plaintext words, and as such can be eas-
ily represented by unformatted character strings. Others,
however, consist of lists of items (e.g. keywords or astro-
nomical objects), or may contain structured information
within their contents (e.g. an abstract containing tables
or math formulae). The simple tagged format we had
adopted did not allow us to easily create hierarchical struc-
tures containing subfields within a bibliographic field.

Finally, there was the problem of representing rela-
tionships among bibliographical entries (e.g. an erratum
referring the original paper), or among bibliographic fields
(e.g. an author corresponding to an affiliation). While we
had been using ASCII identifiers to cross-correlate authors
and affiliations in our records, the adopted scheme was
very limited in its capabilities (e.g. multiple affiliations
for an author could not be expressed using the syntax we
implemented).

Given the shortcomings of the bibliographic record
representation detailed above, we recently started refor-
matted all our bibliographic records as XML (Extensible
Markup Language) documents. XML is a markup lan-
guage which is receiving widespread endorsement as a
standard for data representation and exchange. Using this
format, a single XML document was created for each bib-
liographic entry in our system. Each bibliographic field is
represented as an XML element, and may in turn consist
of sub-elements (see DATA for an example of such a file).
Ancillary information about the record is stored as meta-
data elements within the document. Information about an
individual field within the record is stored as attributes
of the element representing it. Relationships among fields
are expressed as links between the corresponding XML
elements.

While it is beyond the scope of this paper to describe
the characteristics that make XML a desirable language
for representing structured documents, we will point out
the main reasons why XML was selected over other for-
mats in our environment. The reader should note that
most of these remarks not only apply to XML, but also
to its “parent” language, SGML (Standard Generalized
Markup Language).

XML can be used to represent precise, possibly non-
textual information organized in data structures, and as
such can be used as a formal language for expressing
complex data records and their relationships. In our case,
this means that bibliographic fields can be described in
as much detail as necessary. For instance, the publica-
tion information for a conference proceedings volume can
be composed of the conference title, the conference series
name and number, the names of the editors, the name

88 A. Accomazzi et al.: The NASA ADS: Architecture

of the publisher, the place of publication, and the ISBN
number for the printed book. While all this information
has been stored in the past in a single bibliographic field,
the obvious representation for it is a structured record
where items such as conference title and editors are clearly
indentified and tagged. This allows, among other things,
to properly identify individual bibliographical items when
formatting the record for a particular application (e.g.
when citing a work in an article).

A second important feature which XML offers is the
possibility of representing any amount of ancillary infor-
mation (the “metadata”) along with the actual contents
of a document. This permits, among other things, to tag
bibliographic records, or even individual fields, with any
relevant piece of information. For instance, an attribute
can be assigned to the bibliographic field listing a set of
keywords describing what keyword system they belong to.

Other important characteristics of XML are: the adop-
tion of Unicode (Unicode Consortium 1996) for character
data representation, allowing uniform treatment of all in-
ternational characters and most scientific symbols; and the
support for standard mechanisms for managing complex
relationships among different documents through hyper-
linking.

Some of the practical advantages of adopting XML
over other SGML variants simply come from the wide
acceptance of the language in the scientific community
as well as in the software industry. There is currently
great interest among the astronomical data centers in cre-
ating interfaces capable of seamlessly exchanging XML
data (Shaya et al. 1999; Murtagh & Guillaume 1998). It
is our hope that as our implementation of an XML-
based markup language for bibliographic data evolves, it
can be integrated in the emerging Astronomical Markup
Language (Murtagh & Guillaume 1998). As many of the
technologies in the field of document management change
rapidly, it is important for a project of our scope to adopt
the ones which offer the greatest promise of longevity.
In this sense, we feel that the level of abstraction and
dataset independence that XML imposes on programmers
and data specialists justifies the added complexity.

2.3. Data harvesting

Of vital importance to the operation of the ADS is the is-
sue of data exchange with collaborators, in particular the
capability to efficiently retrieve data produced by pub-
lishers and data providers. The process of collecting and
entering new bibliographic records in our databases has
benefitted from three main developments: the adoption
by all publishers of electronic production systems from
the earliest stages of their publication process; the almost
exclusive use of SGML and LaTeX as the formats for doc-
ument production; and the pervasive use of the Internet
as the medium for data exchange.

An overview of the procedures used to collect biblio-
graphic data in the daily interactions between ADS staff
and data providers is presented in DATA. In this section
we discuss how the use of automated procedures has ben-
efitted the activities of data retrieval and entry in the
operations of the ADS. Two approaches are presented:
the “push” paradigm, in which data is sent from the data
provider to the ADS, and the “pull” paradigm, in which
data is retrieved from the data provider.

2.3.1. Data push

The “push” approach has received much attention since
the introduction of web-based broadcasting technologies
in 1997 (Miles 1998), to the point that many people con-
sider both push and web broadcasting to have the same
meaning. Here we refer to the concept of data “push” in its
original meaning, i.e. the activity of electronic data sub-
mission to one or more recipients. The primary means used
by ADS users and collaborators to send us electronic data
are: FTP upload, e-mail, and submission through a web
browser (DATA). While these three mechanisms are con-
ceptually similar (data is sent from a user to a computer
server using one of several well-established Internet proto-
cols), the one we have found most amenable to receiving
“pushed” data is the e-mail approach. This is primarily
due to the fact that modern electronic mail transport and
delivery agents offer many of the features necessary to im-
plement reliable data delivery, including content encoding,
error handling, data retransmission and acknowledgement.
Additional features such as strong authentication and en-
cryption can be implemented at a higher level through
the use of proper software agents after data delivery has
been completed. In the rest of the section we describe the
implementation of an email-based data submission service
used by the ADS, although the system operation can be
easily adapted to work under other protocols such as FTP
or HTTP.

In an attempt to streamline the management of the in-
creasing amount of bibliographic data sent to us, we have
put in place procedures to automatically filter and pro-
cess messages sent to an e-mail address which has been
created as a general-purpose submission mechanism. This
activity is implemented by using the procmail filter pack-
age. Procmail is a very flexible software tool that has
been used in the past to automatically process submis-
sion of electronic documents by a number of institutes
(Bell 1999; Bell et al. 1996). Our procmail filter has been
configured to analyze the input message, verify its origin,
identify which dataset it belongs to, and archive the body
of the message in the proper dataset-specific directory.
Optionally, the filter can be set up so that one or more
procedures are executed after archival. Most of the sub-
missions received this way are simply archived and later
loaded into the databases by the ADS administrators dur-
ing a periodic update (DATA). Using this paradigm, the

A. Accomazzi et al.: The NASA ADS: Architecture 89

email filter allows us to efficiently manage submissions
from different collaborators by enforcing authentication
of the submitter’s email address and by properly filing
the message body. This procedure is currently used to
archive the IAU Circulars and the Minor Planet Electronic
Circulars.

By defining additional actions to be performed af-
ter archival of a submitted e-mail message, automated
database updates can be implemented. We currently use
this procedure to allow automated submission and updat-
ing of our institution’s preprint database, which is cur-
rently maintained by the ADS project as a local resource
for scientists working at the Center for Astrophysics. The
person responsible for maintaining the database contents
simply sends a properly formatted email message to the
ADS manager account and an update operation on the
database is automatically triggered; when the updating is
completed, the submitter is notified of the success or fail-
ure of the procedure. We expect to make increasing use
of this capability as the electronic publication time-lines
have been steadily decreasing.

2.3.2. Data pull

“Data pull” is the activity of retrieving data from one or
more remote network locations. According to this model,
the retrieval is initiated by the receiving side, which sim-
ply downloads the data from the remote site and stores
it in one or more local files. We have been using this ap-
proach for a number of years to retrieve electronic records
made available online by many of our collaborators. For
instance, the ADS LANL astronomy preprint database
(SEARCH) is updated every night by a procedure that re-
trieves the latest submissions of astronomy preprints from
the Los Alamos National Laboratory (LANL) archive,
creates a properly formatted copy of them in the ADS
database, and then runs an updating procedure that recre-
ates the index files used by the search engine (Sect. 3).
This nightly procedure has been running in an unsuper-
vised fashion since the beginning of 1997.

The pull approach is best used to periodically harvest
data that may have changed. By using procedures that are
capable of saving and comparing the original timestamps
generated by web servers we can avoid retrieving a net-
work resource unless it has been updated, making efficient
use of the bandwidth and resources available. Section 4.2
discusses the application of these techniques to the man-
agement of distributed bibliographic resources.

3. Indexing of bibliographic records

In the classic model of information retrieval
(Salton & McGill 1983; Belkin & Croft 1992), the func-
tion of a document indexing engine is: the extraction of

relevant items from the collection of text; the translation
of such items into words belonging to the so-called
Indexing Language (Salton & McGill 1983); and the
arrangement of these words into data structures that sup-
port efficient search and retrieval capabilities. Similarly,
the function of a search engine is: the translation of
queries into words from the Indexing Language; the
comparison of such words with the representations of the
documents in the Indexing Language; and the evaluation
and presentation of the results to the user.

The heterogeneous nature of the bibliographic data en-
tered into our database (DATA), and the need to effec-
tively deal with the imprecision in them led us to design
a system where a large set of discipline-specific interpre-
tations are made. For instance, to cope with the different
use of abstract keywords by the publishers, and to correct
possible spelling errors in the text, sets of words have been
grouped together as synonyms for the purpose of search-
ing the databases. Also, many astronomical object names
cited in the literature are translated in a uniform fash-
ion when indexing and searching the database to improve
recall and accuracy.

In order to achieve a high level of software portabil-
ity and database independence, the decision was made to
write general-purpose indexing and searching engines and
incorporate discipline-specific knowledge in a set of config-
uration and ancillary files external to the software itself.
For instance, the determination of what parsing algorithm
or program should be used to extract tokens indexed in
a particular bibliographic field was left as a configurable
option to the indexing procedure. This allowed us, among
other things, to reuse the same code for parsing text both
at search and index time, guaranteeing consistency of
results.

The remainder of this section describes the design and
implementation of the document indexing system used by
the ADS: Sect. 3.1 provides an overview of indexing proce-
dures; Sect. 3.2 details the organization of the knowledge
base used during indexing; Sect. 3.3 discusses the imple-
mentation of the indexing engine. Details on the search
engine and user interface can be found in SEARCH.

3.1. Overview of the indexing engine

The model we followed for providing search capabilities to
the ADS bibliographic databases makes use of data struc-
tures commonly referred to as inverted files or inverted
indices (Knuth 1973; Frakes & Baeza–Yates 1992). To al-
low the implementation of fielded queries, an inverted file
structure is created for each searchable field, as described
in Sect. 3.3. (In the following we will refer to “bibliographic
fields” as the elements composing a bibliographic record
described in the previous section — e.g. authors, affili-
ations, abstract — and “search fields” as all the possible
searchable entities implemented in the query interface and

90 A. Accomazzi et al.: The NASA ADS: Architecture

described in detail in SEARCH — e.g. author, exact au-
thor, and text). In general the mapping between search
fields and index files is one-to-one, while the mapping
between inverted files and bibliographic fields is one-to-
many. For instance, in our current implementation, the
“author” index consists of the tokens extracted from the
authors field, while the “text” index is created by joining
the contents of the following fields: abstract, title, key-
words, comments, and objects. The complete mapping be-
tween bibliographic fields and search fields is described in
Sect. 3.3.

During the creation of the inverted files, the indexing
engine makes use of several techniques commonly used in
Natural Language Processing (Efthimiadis 1996) to im-
prove retrieval accuracy and to implement sophisticated
search options. These transformations provide the map-
ping between the input data and the words belonging to
the Index Language. Some of them are described below.

Normalization: This procedure converts different mor-
phological variants of a term into a single format. The
aim of normalization is to reduce redundancy in the in-
put data and to standardize the format of some particu-
lar expressions. This step is particularly important when
treating data from heterogeneous sources which may con-
tain textual representations of mathematical expressions,
chemical formulae, astronomical object names, compound
words, etc. A description of how this is implemented via
morphological translation rules is provided in Sect. 3.2.1.

Tokenization: This procedure takes an input charac-
ter string and returns an array of elements considered
words belonging to the Indexing Language. While the tok-
enization of well-structured fields such as author or object
names is straightforward, parsing and tokenizing portions
of free-text data is not a trivial matter. For instance, the
decision on how to split into individual tokens expressions
such as “non-N.A.S.A.” or designations for an astronomi-
cal object such as “PSR 1913+16” is often both discipline
and context-specific. To ensure consistency of the search
interface and index files, the same software used to scan
text words at search time is used to parse the bibliographic
records at indexing time. A detailed description of the text
tokenizer is presented in SEARCH.

Case folding: Converting the case of words during in-
dexing is a standard procedure in the creation of indices
and allows the reduction in size of most index files by
removing redundancy in the input data. For example,
converting all text to uppercase both at indexing and
search time allows us to map the strings “SuperNova,”
“Supernova,” and “supernova” to the canonical uppercase
form “SUPERNOVA.” In our implementation the feature
of folding case has been set as an option which can be
selected on a field-by-field basis, since case is significant
in some rare but important circumstances (e.g. the list
of planetary objects). Details on the treatment of case in
fielded queries are discussed in SEARCH.

Stop words removal: The process of eliminating
high-frequency function words commonly used in the
literature also contributes to reduce the amount of
non-discriminating information that is parsed and in-
dexed (Salton & McGill 1983). The use of case-sensitive
stop words (described in Sect. 3.2.3) allows us to keep
those words in which case alone can discriminate the
semantics of the expression.

Synonym expansion: By grouping words in synonym
classes we can implement a so-called “query expansion”
by returning not only the documents containing one par-
ticular search item, but also the ones containing any of
its synonyms. Using a well-defined set of synonyms rather
than relying on grouping words by stemming algorithms
to perform query expansion provides much greater control
in the implementation of query expansion and can yield
a much greater level of accuracy in the results. This pow-
erful feature of the ADS indexing and search engines is
described more fully in Sect. 3.2.2.

3.2. Discipline-specific knowledge base

The operation of the indexing engine is driven by a
set of ancillary files representing a knowledge base
(Hayes-Roth et al. 1983) which is specific to the domain
of the data being indexed. This means that in general
different ancillary files are used when indexing data in
the different databases, although in practice much of the
metadata used is shared among them.

Since the input bibliographies consist of a collection of
fielded entries and each field contains terms with distinct
and well-defined syntax and semantics, the processing ap-
plied to each field has to be tailored to its contents. The
following subsections describe the different components of
the knowledge base in use.

3.2.1. Morphological translation rules

Morphological translation rules are syntactic opera-
tions designed to convert different representations of
the same basic literal expression into a common for-
mat (Salton & McGill 1983). This is most commonly
done with astronomical object names (e.g. “M 31” vs.
“M31”), as well as some composite words (e.g. “X RAY”,
“X-RAY” and “XRAY”). The translations are specified
as pairs of antecedent and consequent patterns, and
are applied in a case-insensitive way both at indexing
and searching time. The antecedent of the translation is
usually a POSIX (IEEE 1995) regular expression, which
should be matched against the input data being indexed
or searched. The consequent is an expression that replaces
the antecedent if a match occurs, and which may contain
back-references to substrings matched by the antecedent.

A. Accomazzi et al.: The NASA ADS: Architecture 91

The table of translation rules used by the indexing
and search engine uses two sets of replacement expres-
sions for maximum flexibility in the specification of the
translations, one to be used during indexing and the other
one for searching. This allows for instance the contraction
of two words into a single expression while still allowing
indexing of the two separate words. For example, the
expression “Be stars” is translated into “Bestars” when
searching and “Bestars stars” when indexing, so that a
search for “stars” would still find the record containing
this expression. Note that if we had not used the trans-
lation rule described above to create the compound word
“Bestars,” the word “Be” would have been removed since
it is a stop word, and the search would have just returned
all documents containing “stars.” The complete list of
translation rules currently in use is displayed in Table 1.

To avoid the performance penalties associated with
matching large amounts of literal data against the trans-
lation rules, the regular expressions are “compiled” into
resident RAM when the ADS services are started, making
the application of regular expressions to the input stream
very efficient (SEARCH).

Despite the extensive use of synonyms in our
databases, there are cases in which the words in an input
query cannot be found in the field-specific inverted files.
In order to provide additional search functionality, two
options have been implemented in the ADS databases,
one aimed at improving matching of English text and a
second one aimed at matching of author names.

During the creation of the text and title indices,
all words found in the database are truncated to
their stem according to the Porter stemmer algorithm
(Harman 1991). Those stems that do not already appear
in the text and title index are added to the index files
and point to the list of terms that generated the stem.
Upon searching the database and not finding a match,
the search engine proceeds to apply the same stemming
rules to the input term(s) and then repeat the search.
Thus word stemming is used as a “last-resort” measure
in an attempt to match the input query to a group of
words that may be related to it. For searches that require
an exact match, no stemming of the input query takes
place. The limited use of stemming techniques during
indexing and searching text in the ADS system derives
from the observation that these algorithms only allow
minor improvements in the selection and ranking of
search results (Harman 1991; Xu & Croft 1993).

To aid in searches on author names, the option to
match words which are phonetically similar was added
in 1996 and is currently available through one of the
ADS user interfaces. In this case, a secondary inverted
file consisting of the different phonetic representations of
author last names allows a user to generate lists of last
names that can be used to query the database. Two pho-
netic retrieval algorithms have been implemented, based

on the “soundex” (Gadd 1988) and “phonix” (Gadd 1990)
algorithms.

3.2.2. Synonym expansion

A variety of techniques have been used in information re-
trieval to increase recall by retrieving documents contain-
ing not only the words specified in the query but also
their synonyms (Efthimiadis 1996). By grouping individ-
ual words appearing in a bibliographic database into sets
of synonyms, it becomes possible to use this information
either at indexing or searching time to perform a so-called
“synonym expansion”.

Typically, this procedure has been used as an al-
ternative to text stemming techniques to automatically
search for different forms of a word (singular vs. plu-
ral, name vs. adjective, differences in spelling and typo-
graphical errors). However, since the specification of the
synonyms is database- and field-specific, our paradigm
has allowed us to easily extend the use of synonyms to
other search fields such as authors and planetary objects
(SEARCH). Additionally, during the creation of the text
synonym groups we were able to incorporate discipline-
specific knowledge which would otherwise be missed. In
this sense, the use of synonym expansion in ADS adds a
layer of semantic information that can be used to improve
search results. For instance, the following list of words are
listed as being synonyms within the ADS:

circumquasar
miniquasar
nonquasar
protoquasars
qso
qsos
qsr
qsrs
qsrss
qss
quarsars
quasar
quasare
quasaren
quasargalaxie
quasargalaxien
quasarhaufung
quasarlike
quasarpaar
quasars
quasers
quasistellar

During indexing and searching, by default any words
which are part of the same synonym group are considered

92 A. Accomazzi et al.: The NASA ADS: Architecture

Table 1. Morphological Translation Rules used by the search and indexing engines. The first column contains a sequential rule
number. The second column contains the POSIX regular expression used to match input patterns in a case insensitive way; in
this context \b represents a word boundary. The third and fourth columns contain replacement strings used when searching and
indexing, respectively; most of these strings contain backreferences to the patterns matched by the parenthesized expressions
in the antecedent. The class of expressions matching the different sets of rules can be summarized as follows: 1. spectral types
of stars; 2. Hα, Hβ, HI, HII; 3-7. Compound terms; 8. Messier Galaxies; 9. Abell Clusters; 10. NGC Catalog; 11-12. other
Catalogs; 13-14. common abbreviations; 15. supernova 1987A; 16. english elisions; 17. french elisions; 18-20. all other elisions;
21-23. chemical symbols and formulae

Nr. Input Pattern Search replacement Index replacement

1. \b(BE|[OBAFGKMS])(–| +)STAR(S?)\b \1STAR\3 \1STAR\3 STAR\3
2. \bH(–| +)(ALPHA|BETA|I+)\b H\2 H\2 \2
3. \bINFRA(–| +)RED([A-Z]*)\b INFRARED\2 INFRARED\2 RED\2
4. \bRED(–| +)SHIFT([A-Z]*)\b REDSHIFT\2 RED REDSHIFT\2 SHIFT\2
5. \bT(–| +)TAURI\b TTAURI TTAURI TAURI
6. \bX(–| +)RAY(S?)\b XRAY\2 XRAY\2 RAY\2
7. \bGAMMA(–| +)RAY(S?)\b GAMMARAY\2 GAMMA GAMMARAY\2 RAY\2
8. \bMESSIER(–| +)([0-9]) M\2 MESSIER \2 M\2
9. \bABELL(–| +)([0-9]) A\2 ABELL \2 A\2
10. \bN(–| +)([0-9]) NGC\2 NGC\2
11. \b([34]CR?|ADS|H[DHR]|IC|[MW])(–| +)([0-9]) \1\3 \1\3 \3
12. \b(MKN|NGC|PKS|PSR[BJ]?|SAO|UGC)(–| +)([0-9]) \1\3 \1\3 \3
13. \bSHOEMAKER(–| +)LEVY(–| +)([0-9]) SL\3 SHOEMAKER LEVY \3 SL\3
14. \bS-Z\b SUNYAEV-ZELDOVICH SUNYAEV-ZELDOVICH
15. \b1987(–| +)A 1987A 1987A
16. ([A-Z])’S\b \1 \1
17. \b[DL]’([AEIOUY]) \1 \1
18. \b([A-Z]+[A-Z])’([A-RT-Z])\b \1\2 \1 \1\2
19. \b([A-CE-KM-Z])’([A-Z][A-Z]+)\b \1\2 \1\2 \2
20. \b([A-Z]+[A-Z])’([A-Z][A-Z]+)\b \1\2 \1 \1\2 \2
21. ([A-Z0-9]+)([\-\+]+)\B N/A \1\2 \1
22. ([A-Z0-9]*[A-Z])([\-\+]+)([A-Z0-9]+) N/A \1 \1\2 \1\2\3 \3
23. ([A-Z0-9]*[0-9])([\-\+]+)([A-Z][A-Z0-9]*) N/A \1 \1\2 \1\2\3 \3

to be “equivalent” for the purpose of finding matching
documents. Therefore a title search for “quasar” will also
return papers which contained the word “quasistellar” in
their title. Of course, our user interface allows the user to
disable synonym expansion on a field-by-field as well as
on a word-by-word basis.

It is the extensive work that has gone into compiling
such a list that makes searches in the ADS so powerful.
To give an idea of the magnitude of the task, it should
suffice to say that currently the synonyms database con-
sists of over 55 000 words grouped into 9 266 sets. Over
the years, the clustering of terms in synonym groups has
incorporated data from different sources, including the
Multi-Lingual supplement to the Astronomy Thesaurus
(Shobbrook 1995).

Despite the fact that the implementation of query ex-
pansion through the use of synonyms illustrated above has
shown to be an effective tool in searching and ranking of
results, we are currently in the process of reviewing the
contents and format of the synonym database to improve
its functionality. First of all, as we have added more and
more bibliographic references from historical and foreign
sources, the amount of non-English words in our database

has been slowly but steadily increasing. As a result, we
intend to merge the proper foreign language words with
each group of English synonyms in a systematic fashion
(Oard & Diekema 1997; Grefenstette 1998).

Secondly, we intend to review and correct the current
foreign words in our synonym classes to include, where
appropriate, their proper representation according to the
Unicode standard (Unicode Consortium 1996), which pro-
vides the foundation for internationalization and localiza-
tion of textual data. By identifying entries in our synonym
file that were created by transliterating words that require
an expanded character set into ASCII, we can simply add
the Unicode representation of the word to the synonym
group, therefore ensuring that both forms will be properly
indexed and found when either form is used in a search.

Finally, we are implementing a more flexible group
structure for the synonyms which allows us to specify hier-
archical groupings and relationship among groups rather
than simple equivalence among words. This last feature
allows us to effectively implement the use of a limited
thesaurus for search purposes (Miller 1997). Instead of
simply grouping words together in a flat structure as de-
tailed above, we first create separate groups of words, each

A. Accomazzi et al.: The NASA ADS: Architecture 93

representing a distinct and well-defined concept. Words
representing the concept are then assigned to one such
groups and are considered “equivalent” instantiations of
the concept. A word can only belong to one group but
groups can contain subgroups, representing instances of
“sub-concepts”. The following XML fragment shows how
grouping of synonyms is being implemented under this
new paradigm:

<syngroup id="00751">
<subgroup rel="instanceof">00752</subgroup>
<subgroup rel="instanceof">00753</subgroup>
<subgroup rel="instanceof">00754</subgroup>
<subgroup rel="instanceof">00755</subgroup>
<subgroup rel="oppositeof">00756</subgroup>
<syn>qso</syn>
<syn>qsos</syn>
...
<syn>quasistellar</syn>
<syn lang="de">quasare</syn>
<syn lang="de">quasaren</syn>
<syn lang="de">quasargalaxie</syn>
<syn lang="de">quasargalaxien</syn>
</syngroup>

<syngroup id="00752">
<syn>circumquasar</syn>
<syn>circumquasars</syn>
</syngroup>

<syngroup id="00753">
<syn>miniquasar</syn>
<syn>miniquasars</syn>
<syn>microquasar</syn>
<syn>microquasars</syn>
</syngroup>

<syngroup id="00754">
<syn>protoquasar</syn>
<syn>protoquasars</syn>
</syngroup>

<syngroup id="00755">
<syn>quasar cluster</syn>
<syn>quasar clusters</syn>
<syn lang="de">quasarhäufung</syn>
<syn lang="de">quasarhäufungen</syn>
</syngroup>

<syngroup id="00756">
<syn>nonquasar</syn>
<syn>nonquasars</syn>
</syngroup>

<syngroup id="01033">
...

<subgroup rel="instanceof">00755</subgroup>
...
<syn>cluster</syn>
<syn lang="de">häufung</syn>
...
</syngroup>

The new approach allows a much more sophisticated
implementation of query expansion through the use of syn-
onyms. Some of its advantages are:

1) Hierarchical subgrouping of synonyms: every group
may contain one or more subgroups representing “sub-
concepts” related to the group in question. Currently the
two relations we make use of are the ones representing
instantiation and opposition. This capability allow us to
break down a particular concept at any level of detail,
grouping synonyms at each level and then “including” sub-
groups as appropriate.

2) Multiple group membership: each subgroup may be
an instance of one or more synonym groups. For instance,
the synonyms “quasarhäufung” and “quasar cluster” are
in a subgroup that belongs to both the “qso” and the
“cluster” groups.

3) Use of multi-word sequences in synonym groups: in
certain cases, individual words referring to a concept cor-
respond to a sequence of several words in other languages
or context. Allowing declarations of multi-word synonyms
enables us to correctly identify most terms.

4) Multilingual grouping: words belonging to a lan-
guage other than English are tagged with the standard
international identifier for that language. This permits us
to use the synonyms in a context sensitive way, so that if
the same word were to exist in two languages with differ-
ent meanings, the proper synonym group would be used
when reading documents in each language.

The synonym database described above is used at in-
dexing time to create common lists of document identi-
fiers for words belonging to the same synonym group or
any of its subgroups. The effect of this procedure is that
when use of synonyms is enabled, searches specifying a
word that belongs to a synonym group will result in the
list of records containing that word as well as any other
word in the synonym group or its subgroups. In the exam-
ple given above, a search for “qso” would have listed all
documents containing “qso,” its other synonyms, as well
as subgroup members such as “miniquasar” and “proto-
quasar.” On the other hand, a search for “miniquasar”
would have only returned the list of documents containing
either “miniquasar” or “microquasar,” narrowing signifi-
cantly the search results.

3.2.3. Stop words

A number of words considered “irrelevant” with respect to
the searches of the particular field and database at hand

94 A. Accomazzi et al.: The NASA ADS: Architecture

are ignored during indexing and searching. These words
(commonly referred to as “stop words”) consist primar-
ily of terms used in the English language with great fre-
quency, as well as adverbs, prepositions and any other
words not carrying a significant meaning when used in
the context under consideration (Salton & McGill 1983).
Such words are removed both at indexing and searching
time, decreasing the number of irrelevant searches and dis-
regarding search terms that would not yield significant
results.

The use of both case-sensitive and case-insensitive stop
words during indexing allows us to single out those in-
stances of terms that may have different meanings de-
pending on their case. For instance, the words “he” and
“He” usually represent different concepts in the scientific
literature (the second one being the symbol for the ele-
ment Helium). By selectively eliminating all instances of
“he,” when indexing the bibliographies, we stand a good
chance that the remaining instances of the word refer to
the element Helium.

The effort currently underway to create a structured
synonym database will be used to group and maintain the
list of stop words in use. By simply clustering stop words
in synonym groups and properly tagging the group as con-
taining stop words, we can use the same software that is
currently being developed to create and maintain the list
of synonyms in our database. An example of the resulting
records is shown below:

<syngroup id="00037" type="stop">
<!-- he is used in case-sensitive way to avoid
removing "He" (element helium) from index -->

<syn case="mixed">he</syn>
<syn>she</syn>
<syn lang="de">er</syn>
<syn lang="de">sie</syn>
<syn lang="fr">il</syn>
<syn lang="fr">elle</syn>
<syn lang="es">él</syn>
<!-- as above, but without proper accenting -->
<syn lang="es">el</syn>
<syn lang="es">ella</syn>
<syn lang="it">lui</syn>
<syn lang="it">lei</syn>
</syngroup>

This paradigm allows us to treat stop words as a spe-
cial case of synonyms (which are identified by the indexing
and search engines as being of type “stop”).

3.3. The indexing engine

General-purpose indexing engines and relational
databases were used as part of the abstract service

in its first implementation (Kurtz et al. 1993), but they
were eventually dropped in favor of a custom system
as the desire for better performance and additional
features grew with time (Accomazzi et al. 1995), as
is often necessary in the creation of discipline-specific
information retrieval systems (van Rijsbergen 1979). The
approach used to implement the data indexing portion
of the database can be considered “data-driven” in the
sense that parsing, matching and processing of input text
data is controlled by a single configuration file (described
below) and by the discipline-specific files described in
Sect. 3.2.

The inverted files used by the search engine are the
product of a pipeline of data processing steps that has
evolved with time. To allow maximum flexibility in the
definition of the different processing steps, we have found
it useful to break down the indexing procedure into a
sequence of smaller and simpler tasks that are general
enough to be used for the creation of all the files re-
quired by the search engine. A key design element which
has helped generalize the indexing process is the use of a
configuration file which describes all the field-specific pro-
cessing necessary to create the index files. The configura-
tion file currently in use is displayed in Table 2. For each
search field listed in the table, an inverted file structure is
created by the indexing engine.

The first step performed by the indexing software is
the creation of a list containing the document identifiers
to be indexed. This usually consists of the entire set of
documents included in a particular database but may be
specified as a subset of it if necessary (for instance when
creating an update to the index, see Sect. 3.3.3). The list of
document identifiers is then given as input to an “indexer”
program, which proceeds to create, for each search field,
an inverted file containing the tokens extracted from the
input documents and the document identifiers (bibcodes)
where such words occur. (In the following discussion we
will refer to the tokens extracted by the indexer simply
as “words,” although they may not be actual words in
the common sense of the term. For instance, during the
creation of the author index, the “words” being indexed
are author names.) After all the inverted files have been
created, each one of them is processed by a second proce-
dure which generates two separate files used by the search
engine: an “index” file, containing the list of words along
with pointers to a list of document identifiers, and a “list”
file, containing compact representations of the lists of doc-
ument identifiers corresponding to each word.

The following subsections describe the procedures used
during the different indexing steps: Sect. 3.3.1 details the
creation of the inverted files; Sect. 3.3.2 describes the
creation of the index and list files; Sect. 3.3.3 describes
the procedures used to update the index and list files;
Sect. 3.3.4 discusses some of the advantages and shortfalls
of the implemented indexing scheme.

A. Accomazzi et al.: The NASA ADS: Architecture 95

Table 2. Configurable parameters used by the indexing engine. The first column lists the searchable fields to be indexed.
The second column lists the XML elements whose contents are used to create each field’s occurrence table; note that since
the author search field is derived from the exact author index, no elements are listed for it. The third column shows whether
the contents of the field are modified through the use of morphological translation rules. The fourth column lists the name
of the procedure used to parse the field contents into individual tokens to be indexed. These procedures currently are: get children,
which tokenizes an XML fragment by extracting its subelements from it; text parser, which tokenizes input text as described
in the SEARCH paper; and parse authors, which reduces all author names to the canonical forms used by ADS. The last three
columns show whether stop words, case folding, and synonym grouping is used during indexing of each search field. Note that
because of the lack of a common set of keywords used throughout the database, keyword searches are currently disabled in our
standard query interface

Search Field Bibliographic Fields Translation Tokenizer Stop words Case folding Synonyms

exact author <AUTHORS> no get children no yes no
title <TITLE> yes text parser yes yes yes
text <TITLE>, <ABSTRACT>, yes text parser yes yes yes

<KEYWORDS>, <OBJECTS>,
<COMMENTS>

keyword <KEYWORDS> no get children no yes no
object <OBJECTS> yes get children no no yes
author (exact author occurrence table) no parse authors no yes yes

3.3.1. Creation of inverted files

An inverted file (van Rijsbergen 1979; Frakes &
Baeza–Yates 1992) is a table consisting of two columns:
the first column contains the instances of words belonging
to the indexing language, and the second column contains
the list of document identifiers in which those words
were found. The transformation of a document into its
indexing language is performed in the following steps:

1) parsing of the document contents and extraction of
all the bibliographic elements needed for the creation of
one or more search fields; 2) joining of bibliographic ele-
ments that should be indexed together to produce a list
of strings; 3) application of translation rules (if any) to
the list of strings; 4) itemization of the list of strings into
an array of words to be indexed; 5) removal of stop words
from the list of words to be indexed (either case sensitively
or insensitively); 6) folding of case for each of the words
(if requested); 7) creation or addition of an entry for each
word in a hash table correlating the word indexed with
the document identifiers where it appears.

The indexer keeps a separate inverted file for each set
of indexing fields to be created (see Table 2, Col. 1). Each
inverted file is simply implemented as a sorted ASCII ta-
ble, with tab separated columns. Given the current size
of our databases, the creation of these tables takes place
incrementally. A pre-set number of documents is read and
processed by the indexer, an occurrence hash table for
these documents is computed in memory, and an ASCII
dump of the hash is then written to disk file as a set of keys
(the words being indexed) followed by a list of document
identifiers containing such words. The global inverted file
is then created by simply joining the partial inverted files
using a variation of the standard UNIX join command.

Once the occurrence tables for the primary search
fields listed in Table 2 have been created, a set of de-

rived fields are computed if necessary. Currently this step
is used to create the “authors” occurrence table from the
“exact authors” one by parsing and formatting entries in
it so that all names are reduced to the forms “Lastname,
F” (where “F” stands for the first name initial) and
“Lastname.” This allows efficient searching for the stan-
dard author citation format.

3.3.2. Creation of the index and list files

After all the primary and derived inverted files have been
generated, a separate program is used to produce for each
table two separate files which are used by the search en-
gine: an inverted index file (here simply called “index” file)
and a document list file (“list” file, see Salton 1989). The
index file is an ASCII table which contains the complete
list of words appearing in the inverted file and two sets of
numerical values associated with it, the first set is used for
exact word searches, the second one for synonym searches.
The list file is a binary file containing blocks of document
identifiers in which a particular word was found. Each set
of numerical values specified in the index file consists of:
the relative “weight” of the word (or group of synonyms)
in the database, as defined below; the length of the group
of document identifiers in the list file, in bytes; the posi-
tion of the group of document identifiers in the list file,
defined as the byte offset from the beginning of the list
file.

The value chosen to express the weight W (w) of a
word w is a variation of the inverse document frequency
(Salton & Buckley 1988):

W (w) = K × log10N/df(w)

whereK is a constant,N is the total number of documents
in the database, and df(w) is the document frequency

96 A. Accomazzi et al.: The NASA ADS: Architecture

word
length

word
pointer

synonym
weight

synonym
length

synonym
pointer

word
weightword

sequential
identifier 1

sequential
identifier 2

sequential
identifier 3

sequential
identifier 4

sequential
identifier 5

bibcode n

bibcode n+1

bibcode n+2

bibcode n+3

bibcode n+4

bibcode n+5

bibcode n+6

bibcode n+7

bibcode n+8

bibcode n+9

....

.... ...

...

Fig. 2. Implementation of the inverted file structure makes use
of multiple lookups for efficiency. This diagram describes the
sequence of steps performed by the search engine to resolve a
fielded query with synonym expansion enabled. First the query
word is found in the index file which contains a sorted list of
strings, and the address and length of sequential identifiers
corresponding to the word are read. Then the block of sequen-
tial identifiers are read from the list file and are individually
resolved into their corresponding bibcodes

of the word w, i.e. the number of documents in which
the word appears (Salton & Buckley 1988). The choice
of a suitable value for the constant K (currently set to
K = 104) allows the indexing and search engine to per-
form most of the operations in integer arithmetic. To avoid
performing slow log computations during the creation of
the index files, the function that maps df(w) to W (w) is
cached in an associative array so that when repeated in-
teger values of df(w) are encountered, the pre-computed
values are used.

The document identifiers which are stored in the list
files are 32-bit integers (from here on called sequential
identifiers) corresponding to line numbers in the list of
bibliographic codes which have been indexed. The search
engine resolves all queries on index files by performing
binary searches on the words appearing in the index file,
then reading the corresponding list of sequential identifiers
in the list files, combining results, and finally resolving the
sequential identifiers in bibcodes (see Fig. 2).

The procedure for the creation of the index and list
files reads the inverted file associated with each search
field and performs the following steps:

1) read all entries from the list of document identifiers
(bibcode list) and create a hash table associating each
bibcode with its corresponding sequential identifier;

2) if synonym grouping is to be used for this field, read
the synonym file for this field and create a hash table as-
sociating each entry in the synonym group with the word
with the highest frequency in the group;

QSO 1969A&A.....3...42B 1969AJ.....74..335W

QUASAR 1968AJ.....73..407M 1968AJ.....73..910S 1969A&A.....3..436B

QSO 47848 47976

QUASAR 45253 45356 47900

QSO 23328 8 1000 15787 20 1020

QUASAR 20591 12 1008 15787 20 1020

...
47848
47976
45253
45356
47900
45253
45356
47848
47900
47976
...

}}

}}

}

A

D
list file

index file

inverted file

B

C

E

Fig. 3. Creation of the text index and list file from the inverted
file. First the bibliographic codes are translated into sequen-
tial identifiers (A). Then the list file is created by concatenat-
ing “blocks” of sequential identifiers for each word and each
group of synonyms in the inverted file (B), and the index file
is created by storing the list of words, weights, and pointers
to these blocks of sequential identifiers (C). To retrieve the list
of documents containing a word or any of its synonyms, the
search engine searches the index file and then reads the block
of identifiers for either simple word searches (D) or synonym
searches (E)

3) for each word in the inverted file translate the list of
bibcodes associated with it into the corresponding list of
integer line numbers, and mark word as being processed;

4) if word belongs to a group of synonyms, sequentially
find and process all other words in the same group, mark-
ing them as processed, then iteratively process all words
in any of the subgroups until nesting of subgroups is ex-
hausted; if no synonyms are in use, the same procedure
is used with the provision that the group of synonyms is
considered to be composed only of the word itself;

5) join, sort and unique the lists of sequential identi-
fiers for all the words in the current group of synonyms;

6) write to the list file the sorted list of sequential iden-
tifiers for each word in the group of synonyms, followed by
the cumulative list of sequential identifiers for the entire
group of synonyms;

7) for each word in the group of synonyms, write to
the index file an entry containing the word itself and the
two sets of numerical values (weight, length, and offset)
for exact word and synonym searches.

Figure 3 illustrates the creation of entries for two words
in the “text” index and list file from the text inverted file.

A. Accomazzi et al.: The NASA ADS: Architecture 97

3.3.3. Index updates

The separation of the indexing activity into two separate
parts offers different options when it comes to updating an
index. New documents which are added to the database
can be processed by the indexer and merged into the in-
verted file quickly, and a new set of index and list files can
then be generated from it. Similarly, since the synonym
grouping is performed after the creation of the inverted
files, a change in the synonym database can be propa-
gated to the files used by the search engine by recreating
the index and list files, avoiding a complete re-indexing of
the database.

Despite the steps that have been taken in optimiz-
ing the code used in the creation of the index and list
files from the occurrence tables, this procedure still takes
close to two hours to complete when run on the complete
set of bibliographies in the astronomy database using the
hardware and software at our disposal. In order to al-
low rapid and incremental updating of the index and list
files, a separate scheme has been devised requiring only in-
place modification of these files rather than their complete
re-computation.

During a so-called “quick update” of an operational set
of index files used by the search engine, a new indexing
procedure is run on the documents that have been added
to the database since the last full indexing has taken place.
The indexing procedure produces new sets of incremental
index and list files as described above, with the obvious
difference that these files only contain words that appear
in the new bibliographic records added to the database.
A separate procedure is then used to merge the new set
of index and list files into the global index and list files
used by the operational search engine, making the new
records immediately available to the user. The procedure
is implemented in the following steps (see Fig. 4):

1) Compute new sequential identifiers for the list of
bibcodes in the incremental index by adding to each of
them the number of entries in the operational bibcode list.
This guarantees that the mapping between bibcodes and
sequential identifiers is still unique after the new bibcodes
have been merged into the operational index.

2) Append the list of sequential identifiers found in the
incremental list file to the operational list file. In the case
of identifiers corresponding to a new entry in the index
file, their block of values is simply appended to the end
of the operational list file. In the case of identifiers cor-
responding to an entry already present in the operational
index file, the original list of identifiers (“main block”)
needs to be merged with the new list of identifiers. In or-
der to avoid clobbering existing data in the operational
list file, the list of identifiers from the incremental index
is appended to the end of the global list file, creating an
extension of the main blocks of identifiers that we call
an “extension block”. To accomplish the linking between
main and extension blocks, the last sequential identifier in

QSO 23328 8 1000 15787 20 1020

QUASAR 20591 12 1008 15787 20 1020

...
47848
47976
45253
45356
47900
45253
45356
47848
47900
47976
...

...
47848
47976
45253
45356

-330048
45253
45356
47848
47900

-330060
...

8
47900
55011
8
47976
55011

m1

x1

x2

m2

M1

M2

Fig. 4. Modification of a list file by a “quick update:” the main
blocks corresponding to a word present in the incremental in-
dex (M1 and M2) are modified by the insertion of a pointer at
their end and by extension blocks at the end of the index (x1
and x2)

a main block is overwritten with a negative value repre-
senting the corresponding extension block’s offset from the
beginning of the list file (except the change in sign). An
extension block contains as the first integer value the size
of the extension block in bytes, followed by the last iden-
tifier read from the main block in the list file, followed by
the sequential identifiers from the incremental index (see
Fig. 4). When the search engine finds a negative number as
the last document identifier value, it will seek to the speci-
fied offset, read a single integer entry corresponding to the
number of bytes composing the extension block, and then
proceed to read the specified number of identifiers. Note
that because of the way extension blocks are created, the
list of sequential identifiers created by concatenating the
entries in the extension block to the entries in the main
block is always sorted.

3) For each entry in each incremental index file, de-
termine if a corresponding entry exists in the operational
index file. If an entry is found, no modification of the in-
dex file is necessary, otherwise the index file is updated
by inserting the entry in it. The values of the weights and
offsets are corrected by taking into account the total num-
ber of documents in the operational index and the size of
the list file.

98 A. Accomazzi et al.: The NASA ADS: Architecture

3.3.4. Remarks on the adopted indexing scheme

One of the advantages of using separated index and list
files is that the size of the files that are accessed most
frequently by the search engine (the list of bibcodes and
the index files) is kept small so that their contents can be
loaded in random access memory and searched efficiently
(SEARCH). For instance, the size of the text index file
for the astronomy database is approximately 16 MB, and
once the numerical entries are converted into binary rep-
resentation when loaded in memory by the search engine,
the actual amount of memory used is less than 10 MB.

The use of integer sequential identifiers in the list files
allows more compact storage of the document identifiers
as well as implementation of fast algorithms for merg-
ing search results (since all the operations are executed
in 32-bit integer arithmetic rather than having to operate
on 19-character strings). For instance, recent indexing of
the ADS astronomy database produces text inverted files
which have sizes approaching 500 MB, while the size of
the text list file is about 140 MB.

The choice of a word weight which is a function of only
the document frequency allows us to store word weights
as part of the index files. It has been shown that a bet-
ter measure for the relevance of a document with respect
to a query word is obtained by taking into account both
the document frequency df and the term frequency tf ,
defined as the frequency of the word in each document
in which it appears (Salton & Buckley 1988), normalized
to the total number of words in the document. The rea-
soning behind this is that a word occurring with high rel-
ative frequency in a document and not as frequently in
the rest of the database is a good discriminant element
for that document. Although we had originally envisioned
incorporating document-specific weights in the list files
to take into account the relative term frequency of each
word, we found that little improvement was gained in doc-
ument ranking. This is probably due to the fact that the
collection of documents in our databases is rather homo-
geneous as far as document length and characteristics are
concerned. Eventually the choice was made to adopt the
simpler weighting scheme described above.

The procedures used to create the inverted files can
scale well with the size of the database since the global
inverted file is always created by joining together par-
tial inverted files. This allows us to limit the number
of hash entries used by the indexer program during the
computation of the inverted files. According to Heap’s
law (Heap 1978), and as verified experimentally in our
databases, a body of n words typically generates a vo-
cabulary of size V = Knβ where K is a constant and
β ≈ 0.4 − 0.6 for English text (Navarro 1998). Since the
size of the vocabulary V corresponds to the number of
entries in a global hash table used by the indexing soft-
ware, we see that an ever-increasing amount of hard-
ware resources would be necessary to hold the vocabu-

lary in memory; our choice of a partial indexing scheme
avoids this problem. Furthermore, the incremental index-
ing model is quite suitable to being used in a distributed
computing environment where different processors can be
used in parallel to generate the partial inverted files, as
has been recently shown by Kitajima et al. (1997).

The procedures used to create the list and index files
make use of memory sparingly, so that processing of en-
tries from the occurrence tables is essentially sequential.
The only exception to this is the handling of groups of syn-
onyms. In that case, the data structures used to maintain
the entries for the words in the current synonym group
are kept in memory while the cumulative list of sequen-
tial identifiers for the entire group is built. The memory
is released as soon as the entries for the current synonym
group are written to the list and index files.

4. Management of bibliographic properties

By combining bibliographic data and metadata available
from several sources in a single database and by maintain-
ing a list of what properties and resources are available for
each bibliography, the ADS system allows users to formu-
late complex queries such as: “show me all the papers that
cite any paper ever written about the object M 87 and the
subject “globular clusters” and which are available online
as full-text documents”. This query is possible thanks to
the collection and fusion of data from several sources:

1) The astronomical object databases, which
maintain a collection of object names and bibli-
ographies in which they appear. This search is per-
formed through a peer-to-peer network connection
with the SIMBAD (Egret & Wenger 1988) and NED
(Helou & Madore 1988) database servers, as described in
OVERVIEW and SEARCH. This first step allows us to
find the set of bibliographies on M 87.

2) The ADS abstract service indices, which allow a
search of all astronomical papers containing the words
“globular cluster” or their synonyms. This part of the
search is performed by the ADS search engine and makes
use of the local files generated by indexing the biblio-
graphic databases as described in Sect. 3. This step al-
lows us to discard any bibliographic entry which does not
contain the words “globular cluster” in its text index.

3) The list of citations in the ADS databases, which
maintain updated lists of astronomical papers and any pa-
per referenced in them. This allows us to look up the list of
papers that have cited the selected bibliographic entries,
and then proceed to join the results.

4) The list of papers available electronically from either
the astronomical journal publishers or the ADS article
service, both of which provide access to full-text articles
online.

The query given above illustrates how knowing
whether a particular bibliographic entry possesses a par-
ticular property (e.g. whether it has been cited) and what

A. Accomazzi et al.: The NASA ADS: Architecture 99

values may be associated with that property (e.g. the list
of citing papers) can be used as a method for selection
and ranking of query results. Additionally, the availability
of remote resources for a particular bibliographic entry
can be described as being one of its properties, which in
turns allows an additional filtering of the result lists.

As new data regarding a bibliographic entry become
available, its record is updated in the ADS database by
merging the new information with the existing entry and
possibly by updating its relevance within the database and
its relation with respect to other internal and external
resources. For instance, when a new paper is published
which references an existing bibliography, the record for
the latter paper needs to be updated by establishing a
link between the two papers; at the same time, the “ci-
tation relevance measure” for the paper, computed as the
number of times the paper was cited in the literature, also
needs to be updated.

The procedures used in the creation and manage-
ment of bibliographic properties (simply called “proper-
ties” from here on) in the ADS databases are a result of
the need for managing resources related to bibliographies
which may or may not be available locally. The main char-
acteristics of the property sets as defined in our system can
be summarized in the following list:

1) Some properties simply denote the fact that an en-
try belongs to a certain dataset (e.g. whether a paper is
refereed or not), others may have values associated with
them (e.g. “is available online electronically” will have as
its value the URL of the full-text paper). In general, the
knowledge of whether an entry in the database has a cer-
tain property allows the search engine to select it for fur-
ther consideration when executing a database query, while
the value(s) assumed by this property do not need to be
taken into account until later.

2) The lists of bibliographic identifiers and their prop-
erties may be defined as being either “static” or “dy-
namic.” Static properties are those that once defined do
not change in time (e.g. whether a paper is refereed), while
dynamic properties may change their value with time
(e.g. the list of citations for a paper).

3) Some properties may depend on each other
(e.g. references and citations), hence the creation and
updating order for these properties is significant.

Currently the ADS has defined a set of 21 different
properties which are applicable to its bibliographies. Some
of them are listed in Table 3.

In the rest of this section we will discuss the approach
we followed in implementing the database structures al-
lowing query and selection based on properties of bibli-
ographies. In Sect. 4.1 we describe the implementation
used to associate properties and attributes to entries in
the database and the procedures maintaining relational
links among them. In Sect. 4.2 we describe the framework
used to automatically update and merge bibliographic
data with information submitted to the ADS.

4.1. Representation of properties

The creation and updating of properties in the ADS sys-
tem is the result of merging entries provided by different
data sources and individuals at different times and in dif-
ferent formats. The procedures used to maintain the prop-
erty database are therefore structured to be as general as
possible (so that defining a new property is a simple task)
while still allowing as much customization as necessary to
deal with a variety of sources and formats. The represen-
tation of properties allows the search engine to efficiently
filter results based on whether a bibliographic entry pos-
sesses a particular property. It also allows fast access to
the values associated to a particular bibliographic prop-
erty, so that the search interface can quickly access the
information as required.

Instead of representing these properties as a single re-
lational table where each bibliographic entry is associated
with the ordered set of property values, a different ap-
proach was chosen where each property is represented by
a separate table. The following definition was adopted:

“A bibliographic entry b possesses property p if the
unique identifier for b appears in the property table asso-
ciated with p, Tp. If p is a property that can have one or
more values associated with it, the entry for b in table Tp

will contain the n-tuple of such values next to it.”
As an example, a possible entry in table Tdata for a

bibliographic entry which has a data property associated
to it could be:

1999A&A...341..121S

http://cdsweb.u-strasbg.fr/htbin/myqcat3?

J/A+A/341/121/

http://adc.gsfc.nasa.gov/adc-cgi/cat.pl?

/journal_tables/A+A/341/121/

The first column contains the bibliographic identifier
for the property, while the second column contains the
values of the data property, in this case a list of URLs
of electronic data tables published in the paper. (Note
that this record has been split on several lines for editorial
reasons.)

The file structure most amenable to representing these
property tables is again an inverted file, which allows fast
binary searches on the bibcode identifiers. As is the case
for the inverted files used to perform fielded searches on
the contents of the bibliographic entries in our database
(see Sect. 3), each property table is decomposed in two
parts, an index file and a list file. Since the records in the
index file contain only bibcodes, which have a fixed length,
we can create a binary index file where each record con-
sists of one bibcode identifier (which is the sort key in the
file), a pointer into the list file, and the number of prop-
erty values associated with the bibcode. Entries in the list
file are variable length, newline separated records, each
record corresponding to a property value.

In addition to the index and list files, a database-
specific file is generated for each property containing the

100 A. Accomazzi et al.: The NASA ADS: Architecture

Table 3. Examples of bibliographic properties defined in the ADS and their possible values

Name Explanation Value(s)

associated one or more associated bibliographic records exist for this entry (e.g. erratum
or papers published as part of a series)

bibcodes of papers associated
with bibliographic entry

citation bibliographic entry has been cited by one or more papers in the ADS bibcodes of papers citing biblio-
graphic entry

data bibliographic entry has electronic data tables published with it URLs of data tables
electronic a full-text electronic article exist for this bibliographic entry URL of electronic journal article
ocr abstract of bibliographic entry was generated by Optical Character

Recognition programs
N/A

refereed bibliographic entry is a refereed paper N/A

list of all bibcodes in that particular database which pos-
sess that property. When the data structures used by the
search engine are loaded into random access memory, these
lists of bibcodes are read and for each bibliographic entry a
binary array containing the list of properties which it pos-
sesses is created. By storing this information as part of the
memory-resident data structures used by the search en-
gine, selection and filtering of bibliographic entries based
on their properties becomes a very efficient operation. The
current implementation uses a 32-bit integer to represent
the binary array of properties, where the n-th bit is set
if and only if the bibliographic entry possesses the n-th
property.

4.2. Implementation of the property database
management software

To provide the capability of merging properties and values
generated from separate sources and in different formats,
we devised a framework consisting of a hierarchical set of
files and software utilities which are used to implement
an efficient processing pipeline (see Fig. 5). The approach
we follow may be regarded as being bottom-up, because
the property files are always created from smaller, inde-
pendently updated datasets. Updating of such datasets is
typically event-driven, as described below.

A top-level directory is created which contains one sub-
directory for each property in the database. Each of these
subdirectories in turn contains files representing different
datasets which need to be merged together. The nature
and content of such files is determined by their extension,
according to the following conventions:

.tab: files containing identifiers and properties as pro-
vided by different data centers and users; these entries
will need to be translated to the standard format used by
scripts managed by the ADS staff;

.bib: files containing lists of tab-separated identifier
and value pairs; these entries are suitable to be merged
into a single property file used by the ADS search engine;

a.uri www a.tab a.fmt a.bib

 b.tab b.fmt b.bib

 c.bib

d.flt d.bib

join all.bibs

x.kill

y.kill

join all.kills

all bibcodes
in database intersect all.props

Fig. 5. Schema used for the creation of bibliographic prop-
erties. In this abstract example, four different sources
contribute to the creation of bibliographic property files
a.bib, b.bib, c.bib, d.bib. The input files used to generate the
global list of properties may consist of either static lists of
bibcodes (c.bib), tabular data to be reprocessed to create
properly formatted entries (b.tab), lists of URLs containing
information to be retrieved and processed (a.uri), or “filter”
functions acting on the global list of bibliographic entries
(d.flt). The system allows for the existence of “exception
bibcodes,” here represented as the contents of files x.kill and
y.kill that are removed from the global list of bibcodes before
the property inverted file all.props is created. The execution
and updating of any of these files is controlled by a system of
makefiles that trigger updating only if necessary

.fmt: executable procedures which generate .bib files
from their respective .tab files; these procedures contain
format- and domain- specific knowledge about the source
of the particular dataset and the mapping of entries from
the .tab file into the .bib file;

.uri: file containing the URLs of documents which
should be downloaded from the network and merged to
create a .tab file; these URLs may correspond to static or
dynamic documents generated by other service providers
listing the bibliographic properties available on their web
site;

.flt: executable procedures which generate .bib files by
filtering the complete list of bibliographic identifiers ac-
cording to some data-specific criteria; one example of such
filter is the one which produces the list of all refereed bib-
codes from the list of all bibcodes by checking the journal
abbreviation;

A. Accomazzi et al.: The NASA ADS: Architecture 101

.kill: file containing the list of bibcodes which should
not be listed as possessing a particular property; these
are typically used to implement “exceptions to the rule”,
cases; for example, we use a kill file to remove bibcodes
corresponding to editorial notices from the global list of
papers appearing in a refereeed journal.

Data retrieval and formatting scripts designed after
the GNU “make” utility limit the creation and processing
of data to what is strictly necessary. In particular, data
sources that are specified as URLs are downloaded only if
their timestamp is more recent than their local copy. This
obviously applies to network protocols that support the
notion of time-stamping, e.g. HTTP and FTP. Similarly,
scripts that are used to format input tables into lists of
bibcodes and relative URLs are only executed if the times-
tamp of the relevant tables indicates that they have been
modified more recently than their corresponding target
file.

5. Database mirroring

All of the software development and data processing in
the ADS has been carried out over the last 6 years in
a UNIX environment. During the life of the project, the
workgroup-class server used to host the ADS services has
been upgraded twice to meet the increasing use of the sys-
tem. The original dual processor Sun 4/690 used at the
inception of the project was replaced by a SparcServer
1000E with two 85 MHz Supersparc CPU modules in
1995 and subsequently an Ultra Enterprise 450 with two
300 MHz Ultrasparc CPUs was purchased in 1997. These
two last machines are still currently used to host the ADS
article and abstract services, respectively.

Soon after after the inception of the article service in
1995 it became clear that for most ADS users the limit-
ing factor when retrieving data from our computers was
bandwidth rather than raw processing power. With the
creation of the first mirror site hosted by the CDS in late
1996, users in different parts of the world started being
able to select the most convenient database server when
using the ADS services, making best use of bandwidth
available to them. At the time of this writing, there are
seven mirror sites located on four different continents, and
more institutions have already expressed interest in host-
ing additional sites. The administration of the increasing
number of mirror sites requires a scalable set of software
tools which can be used by the ADS staff to replicate and
update the ADS services both in an interactive and in an
unsupervised fashion.

The cloning of our databases on remote sites has pre-
sented new challenges to the ADS project, imposing addi-
tional constraints on the organization and operation of our
system. In order to make it possible to replicate a complex
database system elsewhere, the database management sys-
tem and the underlying data sets have to be independent

of the local file structure, operating system, and hardware
architecture. Additionally, networked services which rely
on links with both internal and external web resources
(possibly available on different mirror sites) need to be ca-
pable of deciding how the links should be created, giving
users the option to review and modify the system’s linking
strategy. Finally, a reliable and efficient mechanism should
be in place to allow unsupervised database updates, espe-
cially for those applications involving the publication of
time-critical data.

In the next sections we describe the implementation of
an efficient model for the replication of our databases to
the ADS mirror sites. In Sect. 5.1 we describe how system
independence has been achieved through the parameter-
ization of site-specific variables and the use of portable
software tools. In Sect. 5.2 we describe the approach
we followed in abstracting the availability of network
resources through the implementation of user-selectable
preferences and the definition of site-specific default val-
ues. In Sect. 5.3 we describe in more detail the paradigm
used to implement the synchronization of different parts
of the ADS databases. We conclude with Sect. 5.4 where
we discuss possible enhancements to the current design.

5.1. System independence

The database management software and the search en-
gine used by the ADS bibliographic services have been
written to be independent from system-specific attributes
to provide maximum flexibility in the choice of hardware
and software in use on different mirror sites. We are cur-
rently supporting the following hardware architectures:
Sparc/Solaris, Alpha/Tru64 (formerly Digital Unix), IBM
RS6000/AIX, and x86/Linux. Given the current trends in
hardware and operating systems, we expect to standardize
to GNU/Linux systems in the future.

Hardware independence was made possible by writ-
ing portable software that can be either compiled under
a standard compiler and environment framework (e.g. the
GNU programming tools, Loukides & Oram 1996) or in-
terpreted by a standard language (e.g. PERL version 5,
Wall et al. 1996). Under this scheme, the software used by
the ADS mirrors is first compiled from a common source
tree for the different hardware platforms on the main ADS
server, and then the appropriate binary distributions are
mirrored to the remote sites.

One aspect of our databases which is affected by the
specific server hardware is the use of binary data in the
list files, since binary integer representations depend on
the native byte ordering supported by the hardware. With
the introduction of a mirror site running Digital UNIX in
the summer of 1999, we were faced with having to decide
whether it was better to start maintaining two versions of
the binary data files used in our indices or if the two inte-
ger implementations should be handled in software. While

102 A. Accomazzi et al.: The NASA ADS: Architecture

we have chosen to perform the integer conversion in soft-
ware for the time being given the adequate speed of the
hardware in use, we may revisit the issue if the number
of mirror sites with different byte ordering increases with
time.

Operating System independence is achieved by using
a standard set of public domain tools abiding to well-
defined POSIX standards (IEEE 1995). Any additional
enhancements to the standard software tools provided by
the local operating system is achieved by cloning more
advanced software utilities (e.g. the GNU shell-utils pack-
age) and using them as necessary. Specific operating sys-
tem settings which control kernel parameters are modified
when appropriate to increase system performance and/or
compatibility among different operating systems (e.g. the
parameters controlling access to the system’s shared mem-
ory). This is usually an operation that needs to be done
only once when a new mirror site is configured.

File-system independence is made possible by orga-
nizing the data files for a specific database under a single
directory tree, and creating configuration files with param-
eters pointing to the location of these top-level directories.
Similarly, host name independence is achieved by storing
the host names of ADS servers in a set of configuration
files.

5.2. Site independence

While the creation of the ADS mirror sites makes it vir-
tually impossible for users to notice any difference when
accessing the bibliographic databases on different sites,
the network topology of a mirror site and its connectiv-
ity with the rest of the Internet play an important role
in the way external resources are linked to and from the
ADS services. With the proliferation of mirror sites for
several networked services in the field of astronomy and
electronic publishing, the capability to create hyperlinks
to resources external to the ADS based on the individ-
ual user’s network connectivity has become an important
issue.

The strategy used to generate links to networked ser-
vices external to the ADS which are available on more
than one site follows a two-tiered approach. First, a “de-
fault” mirror can be specified in a configuration file by
the ADS administrator (see Fig. 6). The configuration file
defines a set of parameters used to compose URLs for dif-
ferent classes of resources, lists all the possible values that
these parameters may assume, and then defines a default
value for each parameter. Since these configuration files
are site-specific, the appropriate defaults can be chosen
for each of the ADS mirror sites depending on their loca-
tion. ADS users are then allowed to override these defaults
by using the “Preference Settings” system (SEARCH) to
select any of the resources listed under a category as their
default one. Their selection is stored in a site-specific user

<!-- $Id: ads_sites.config,v 1.1 1997/09/08 19:52:16 ads Exp ads $ -->
<!-- Sets possible values for mirror sites used by the ADS

bibliographic services, with default values for the SAO site. -->

<item n="1">
<DESC>ADS Article Mirrors</DESC>
<TAGS>ARTICLE</TAGS>
<DEF>1</DEF>
<SITE id="1">

<NAME>SAO, Cambridge, MA, USA</NAME>
<URL>http://adsbit.harvard.edu</URL>

</SITE>
<SITE id="2">

<NAME>NAO, Tokyo, Japan</NAME>
<URL>http://ads.nao.ac.jp</URL>

</SITE>
<SITE id="3">

<NAME>CDS, Strasbourg, France</NAME>
<URL>http://cdsads.u-strasbg.fr</URL>

</SITE>
<SITE id="4">

<NAME>Univ. Nottingham, England</NAME>
<URL>http://ukads.nottingham.ac.uk</URL>

</SITE>
</item>

<item n="2">
<DESC>SIMBAD Mirrors</DESC>
<TAGS>SIMBAD</TAGS>
<DEF>1</DEF>
<SITE id="1">

<NAME>CDS, Strasbourg, France</NAME>
<URL>http://simbad.u-strasbg.fr</URL>

</SITE>
<SITE id="2">

<NAME>SAO, Cambridge, MA, USA</NAME>
<URL>http://simbad.harvard.edu</URL>

</SITE>
</item>

<item n="3">
<DESC>University of Chicago Press Mirrors</DESC>
<TAGS>UCP</TAGS>
<DEF>1</DEF>
<SITE id="1">

<NAME>University of Chicago Press, USA</NAME>
<URL>http://www.journals.uchicago.edu</URL>

</SITE>
<SITE id="2">

<NAME>CDS, Strasbourg, France</NAME>
<URL>http://cdsaas.u-strasbg.fr:2001</URL>

</SITE>
<SITE id="3">

<NAME>NAO, Tokyo, Japan</NAME>
<URL>http://aas.nao.ac.jp</URL>

</SITE>
</item>

Fig. 6. The configuration file used to define variables and re-
lated sites for resources available from multiple network loca-
tions. It should be noted that this approach can be used for
parameterizing and generalizing URL resolution even in those
cases where the resource is available from a single location

preference database which uses an HTTP cookie as an ID
correlating users with their preferences (SEARCH).

In order to create links to external resources which
are a function of a user’s preferences, we store the
parametrized version of their URLs in the property
databases. The search engine expands the parameter
when the resource is requested by a user according to
the user’s preferences. For instance, the parametrized
URL for the electronic paper associated with the bibli-
ographic entry 1997ApJ...486...42G can be expressed
as UCP/cgi-bin/resolve?1997ApJ...486...42G.
Assuming the user has selected the first entry in Fig. 6 as
the default server for this resource, the search engine will
expand the URL to the expression:
http://www.journals.uchicago.edu/cgi-bin/resolve?

1997ApJ...486...42G

This effectively allows us to implement simple name
resolution for a variety of resources that we link to.
While more sophisticated ways to create dynamic

A. Accomazzi et al.: The NASA ADS: Architecture 103

links have been proposed and are being used by
other institutions (Van de Sompel & Hochstenbach 1999;
Fernique et al. 1998), there is currently no reliable way
to automatically choose the “best” mirror site for a
particular user, since this depends on the connectivity
between the user and the external resource rather
than the connectivity between the the ADS mirror
site and the resource. By saving these settings in a
user preference database indexed on the user HTTP
cookie ID (SEARCH), users only need to define their
preferences once and our interface will retrieve and use
the appropriate settings as necessary.

5.3. Mirroring software

The software used to perform the actual mirroring of the
databases consists of a main program running on the ADS
master site initiating the mirroring procedure, and a num-
ber of scripts, run on the mirror sites, which perform
the transfer of files and software necessary to update the
database. The paradigm we adopted in creating the tools
used to maintain the mirror sites in sync is based on a
“push” approach: updates are always started on the ADS
main site. This allows mirroring to be easily controlled by
the ADS administrator and enables us to implement event-
triggered updating of the databases. The main mirroring
program, which can be run either from the command line
or through the Common Gateway Interface (CGI), is a
script that initiates remote command procedures on the
sites to be updated, sets up the environment by evaluating
the mirror sites’ and master site’s configuration files, and
then runs scripts on the remote sites that synchronize the
local datasets with the ADS main site. The menu-driven
CGI interface used for mirroring is shown in Fig. 7.

The updating procedures are specialized scripts which
check and update different parts of the database and
database management software (including the procedures
themselves). For each component of the database that
needs to be updated, synchronization takes place in two
steps, namely the remote updating of files which have
changed to a staging directory, and the action of making
these new files operational. This separation of mirroring
procedures has allowed us to enforce the proper checks on
integrity and consistency of a data set before it is made
operational.

The actual comparison and data transfer for each of
the files to be updated is done by using a public domain
implementation of the rsync algorithm (Tridgell 1999a).
The advantages of using rsync to update data files rather
than using more traditional data replication packages are
summarized below.

1) Incremental updates: rsync updates individual files
by scanning their contents, computing and comparing
checksums on blocks of data within them, and copying
across the network only those blocks that differ. Since dur-
ing our updates only a small part of the data files actually

Fig. 7. The WWW interface used by the ADS administrators to
update different components of the databases on the different
mirror sites. The small windows at the bottom of the screen
display, for each of the ADS databases, the version number
currently operational at each mirror site

changes, this has proven to be a great advantage. Recent
implementations of the rsync algorithms also allow partial
transfer of files, which we found useful when transferring
the large index files used by the search engine. In case the
network connection is lost or times out while a large file is
transferred, the partial file is kept on the receiving side so
that transfer of additional chunks of that file can continue
where it left off on the next invocation of rsync.

2) Data integrity: rsync provides several options that
can be used to decide whether a file needs updating with-
out having to compare its contents byte by byte. The de-
fault behavior is to initiate a block by block comparison
only if there is a difference in the basic file attributes (time
stamp and file size). The program however can be forced
to perform a file integrity check by also requesting a match
on the 128-bit MD4 checksum for the files.

3) Data compression: rsync supports internal
compression of the data stream sent between the
master and mirror hosts by using the zlib library
(Deutsch & Gailly 1996).

4) Encryption and authentication: rsync can be
used in conjunction with the Secure Shell package
(Ylonen et al. 1999) to enforce authentication between
rsync client and server host and to transfer the data in an
encrypted way for added security. Unfortunately, since all
of the ADS mirror sites are outside of the U.S., transfer of
encrypted data could not be performed at this time due

104 A. Accomazzi et al.: The NASA ADS: Architecture

to restrictions and regulations on the use of encryption
technology.

5) Access control: the use of rsync allows the remote
mirror sites to retrieve data from the master ADS site us-
ing the so-called anonymous rsync protocol. This allows
the master site to exercise significant control over which
hosts are allowed to access the rsync server, what datasets
can be mirrored, and does not require remote shell access
to the main ADS site, which has always been the source
of great security problems.

During a typical weekly update of the ADS astronomy
database, as many as 1% of the text files may be added or
updated, while the index files are completely recreated. By
checking the attributes of the individual files and transfer-
ring only the ones for which either timestamp or size has
changed, the actual data which gets transferred when up-
dating the collection of text files is of the order of 1.7% of
the total file size (12 MB vs. 700 MB). By using the incre-
mental update features of rsync when mirroring a new set
of index files, the total amount of data being transferred
is of the order of 38% (250 MB vs. 650 MB).

5.4. Planned enhancements

While the adoption of the rsync protocol has made it pos-
sible to dramatically decrease the time required to update
a remote database, there are several areas where addi-
tional improvements could be made to the current scheme
in an effort to reduce the amount of redundant processing
and network transfers on the main ADS server. Some of
the planned improvements are discussed below.

Given the CPU-intensive activity of computing lists of
file signatures and checksums for files selected as poten-
tial targets for a transfer, the rsync server running on the
main ADS site is often under a heavy load when the weekly
updates of our bibliographic databases are simultaneously
mirrored to the remote sites. Under the current implemen-
tation of the rsync server software, each request from a
mirror site is handled by a separate process which creates
the list of files and directories being checked. Therefore,
the load on the server increases linearly with the number
of remote hosts being updated, although much of the pro-
cessing requested by the separate rsync connections is in
common and takes place at the same time. By adding an
option to cache the data signatures generated by the rsync
server and exchanged with each client, most of the process-
ing involved could be avoided. This option, first suggested
by the author of the rsync package (Tridgell 1999b) but
never implemented, would significantly benefit busy sites
such as the ADS main host. A similar approach has been
used by Dempsey & Weiss (1999) to implement an exper-
imental replication mechanism based on rsync. We hope
that a stable and general approach to this caching issue
can be adopted soon and are collaborating with the main-
tainers of the package on its development.

A second improvement that would significantly reduce
the bandwidth currently used during remote updating
of the ADS mirror sites is the implementation of a
multicasting or cascading mirroring model (see Fig. 8).
Internet multicasting is still a technology under develop-
ment (Miller et al. 1998) and efficient implementations
require special software support at the IP (Internet
Protocol) level, over which we have no control. The
cascading model can instead by implemented at the
application level using current software tools. Under this
model, the administrator of the main server to be cloned
defines a tree in which the nodes represent the mirror
sites, with the root of the tree being the main site. Data
mirroring is then implemented by having each node in the
tree “push” data to its subordinate nodes. This approach
trades off the simplicity of simultaneous updating for all
mirror sites from a central host in favor of a sequence of
cascading updates, which is a sensible solution once the
number of mirror sites becomes large. We are currently
experimenting with this model on a prototype system
and plan to make the design operational if it proves to be
advantageous.

6. Future developments

By all accounts, the ADS project has been very success-
ful in providing bibliographical services to the astronomer
and research librarian. Much of the system’s strength has
been its role as part of a network of services designed to
provide advanced search and retrieval capabilities to the
scientific community at large. Given the rapid changes in
the field of electronic publishing, resource linking, digital
library research, it is of great importance for our project
to adapt its operations to this ever-changing environment
and its underlying technologies.

In this last section we analyze some of the promises
and challenges that we expect to face over the next sev-
eral years and we discuss how they may affect the evo-
lution of our system. In Sect. 6.1 we describe the new
datasets that are becoming available to our project and
the changes necessary for their integration in the exist-
ing system architecture. Section 6.2 describes the effect of
expected technological changes on the operations of the
ADS. Finally, Sect. 6.3 discussed how increased collabora-
tion and inter-operability among data providers can lead
to the creation of a more integrated environment making
better use of information discovery and electronic publish-
ing technologies.

6.1. New data

From the user prospective, one of the most significant
changes in the ADS will be the completion of our full-
text coverage and abstracting for the scholarly astronom-
ical literature. Over the next year we expect to complete

A. Accomazzi et al.: The NASA ADS: Architecture 105

A

A

A

B

B

B

C

C

C

D

D

D

E

E

E

F

F

F

G

G

G

H

H

H

ADS

ADS

ADS

MASTER

MASTER

MASTER

DATABASE

DATABASE

DATABASE

SERVER

SERVER

SERVER

ROUTER

(a)

(b)

(c)

Fig. 8. Schematic representation of network mirroring models
used to replicate a central database available on the ADS
master database server to a number of mirror sites (A-H).
a) Traditional model: data is transferred using parallel, inde-
pendent data pipes between the master and the mirror sites.
b) Multicasting model: one single stream of data is transferred
from the master site to a central router and then multiplexed
to the mirror sites using multicast technologies. c) Cascading
model: a hierarchy of mirror nodes is defined based on the rel-
ative network connectivity; each node updates the local copy
of its databases and then proceeds to mirror them to its sub-
ordinate nodes

the digitization of all astronomical journals back to vol-
ume 1 (DATA). The availability of such a large body of
scanned publications allows us to pursue some important
goals through the use of Optical Character Recognition
(OCR) technology: the creation of full-text documents and
the extraction of abstract and citation information from
them.

The full text of an article produced by OCR programs
can be used by the indexing and search engine to provide
better retrieval capabilities. However, the current index-
ing model has been developed to work well with a homo-
geneous set of bibliographic data with little variation in
document length and content model; extending the scope
of our databases to include the full-text of articles may
therefore require a new approach to the entire architec-
ture behind the indexing and search engines. Furthermore,
since the output generated by OCR packages is known to
contain incorrectly recognized characters and words, new
strategies may be required to manage this level of uncer-
tainty during indexing and searching.

The extraction and OCRing of important document
fragments such as abstracts and references is currently
an ongoing process which holds great promise (DATA).
Essentially, the combination of pattern recognition and
OCR techniques allows us to identify areas in a scanned
document corresponding to the abstract or reference sec-
tion of a paper. The text extracted from an abstract
section is then reformatted and inserted into the bibli-
ographic record for that paper. Periodic analysis of the
text index has been necessary to identify and correct mis-
interpreted characters and words produced by the OCR
software. The increased amount of human checks on our
data set as a quality assurance measure has been the price
to pay for integrating these additional abstracts in our
bibliographic records.

Text extracted from a reference section is analyzed
by programs making use of natural language processing
techniques to identify the individual works cited in the
article and add them to our citation database. The chal-
lenge we are facing in this case is creating a robust system
capable of correctly parsing and matching the cited ref-
erence strings with bibliographic records in our database
(Accomazzi et al. 1999), with the additional complication
that the input text may contain characters incorrectly rec-
ognized by the OCR software.

6.2. New technologies

The latest developments in Electronic Data Interchange
and User Interfaces advocate the adoption of a model
of data representation where there is clear separation
between content, metadata, and presentation. The
widespread endorsement of XML and related propos-
als such as the XLink language, the Extensible Style
Language (XSL), and the Document Object Model

106 A. Accomazzi et al.: The NASA ADS: Architecture

(DOM), seems to indicate that we will see pervasive
use of XML across platforms and implementations.
While this raises hopes that data exchange among
different astronomical data centers and institutions
can be streamlined, it is not clear at this point that a
unique framework describing all resources in astronomy
can be defined, nor that such a system is necessary
at this point. However, the adoption of XML as the
“lingua franca” for data interchange can help remove the
initial obstacles preventing more widespread creation of
peer-to-peer connections between information providers
and can help speed up the creation of “federated” services
(Murtagh & Guillaume 1998).

In this context, we hope to leverage the wide deploy-
ment of XML-based applications to generalize and ex-
tend the services currently offered to our collaborators
and users. This involves modifying the implemented APIs
(SEARCH) to allow output of structured XML docu-
ments containing both metadata and bibliographic data.
We have already started adopting this paradigm while
implementing new and experimental services which re-
quire the exchange of data and metadata structures be-
tween client and server, such as the ADS reference resolver
(Accomazzi et al. 1999).

Another issue related to data interchange which is cur-
rently receiving much attention is the definition of persis-
tent identifiers for bibliographic resources available on the
Internet. This issue is a particular instance of a more gen-
eral problem, which is the need to define common naming
schemes for digital objects and distributed locator services
allowing their resolution. For a number of years this has
been recognized as one of the most important infrastruc-
ture components necessary for the large-scale development
of digital library systems (Lynch & Molina-Garcia 1996).
Today most publishers are providing location services
which are based on the traditional paradigm of identi-
fying a published work by journal, volume and page. It
is becoming increasingly clear that a more general mech-
anism will have to be adopted in the future since this
model does not extend well into the digital era. For in-
stance, a publication may be available only in electronic
form (as is already the case for some “e-journals” such
as EPJdirect and ZPhys-e from Springer-Verlag). or may
correspond to a multimedia object rather than a tradi-
tional text document; in these cases, the concept of pagi-
nation loses its meaning. The Document Object Identifier
(DOI, Paskin 1999), which has been proposed by an in-
ternational consortium of publishers, holds the promise
of becoming the universal identifier suitable for naming
digital objects.

The ADS has already extended the use of the bibcode
identifier in different ways to account for the existence of
electronic-only publications (DATA), but it is becoming
increasingly more difficult to map new document identi-
fiers into a model that was designed to describe printed
material only. It is likely that over the next few years

our project will need to adopt new notations for identi-
fying bibliographic records, while still maintaining back-
ward compatibility with the existing bibcodes for printed
work. In this sense, it is likely that ADS will be able to
help the astronomical community in the transition from
print-based to electronic publishing by providing resolv-
ing services for astronomical bibliographies and related
resources.

6.3. New services

The adoption of common technologies and protocols by
data providers has helped create a low-level of inter-
operability among different data services (in the sense that
users can simply browse across different web sites by fol-
lowing links between them). However, with the exponen-
tial increase of documents and services available on the
web, the problem of providing an integrated tool for lo-
cating information of interest to a researcher has remained
unsolved. While well-organized repositories and archives
with good search interfaces exist for a variety of data sets,
a scientist who needs to consult several such archives is
left with having to individually query each one separately
and then organize the results collected from each one of
them. It is fortunate that the creation of the ADS and
its ongoing collaboration with other data providers has
reduced (if not completely eliminated) this problem for
astronomers, but this is not the case for scientists in other
disciplines or for those researches whose work spans across
the conventional boundaries of scientific research fields.

The problem of providing a unified search mechanism
across datasets is being tackled both within the individ-
ual disciplines (Heikkila et al. 1999; Fernique et al. 1998;
Murtagh & Guillaume 1998) and at the architectural
level (Schatz 1997). A proposed solution to this prob-
lem is the creation of federated services composed by
“clustering” the combined assets and search capabilities
of several independent data centers. A common set of
metadata elements describing the local search domain
and interface can be used to translate generic queries into
site-specific ones, and then merge and present the results
to the users. While this type of approach is known to
work within well-restricted research domains, the broader
problem of querying databases belonging to different re-
search fields is far more complex and requires the creation
of systems capable of implementing semantic inter-
operability (Schatz 1997; Lynch & Molina-Garcia 1996).
While the ADS has been offering direct access to its
search engine since 1996 (SEARCH), in order for the ADS
to become part of such a federated system, we will need
to provide an increased level of abstraction and access
to the capabilities of our search interfaces. Additionally,
the emerging standards for site- and database-specific
resource descriptions will require the creation and main-
tenance of a body of metadata defining both the extent

A. Accomazzi et al.: The NASA ADS: Architecture 107

of our databases and the supported query interfaces.
Hanisch (2000) has recently proposed the creation of
such a distributed system for Astronomy and the Space
Sciences.

Another important aspect of services increasing inter-
operability between data providers is cross-linking of
online resources. While most publishers of scientific jour-
nals have been able to create electronic versions of their
journals relatively quickly soon after the explosion in
popularity of the web, only a few of them have taken ad-
vantage of the new capabilities that the technology has to
offer, namely the possibility to create hyperlinks between
online documents and related resources. In this respect,
electronic publishing in astronomy was ahead of its times
with the publication by the University of Chicago Press
in late 1996 of the electronic version of the Astrophysical
Journal which contained hyperlinks from the reference
section of articles to bibliographic records in the ADS.
The early implementation of this feature became possible
thanks to the close collaboration between the publisher,
the ADS staff, and the visionary leadership provided by
the American Astronomical Society (AAS). Similarly,
editors and publishers have now made it their pol-
icy to submit electronic versions of data tables
appearing in astronomical papers to the CDS and
Astronomical Data Center (ADC) archives, allowing
ADS to easily maintain links to these datasets in
its bibliographic records. This practice was estabil-
ished back in 1990 with an agreement between the
CDS and the editors of the journal Astronomy &
Astrophysics.

While reference and object linking has today become
more commonplace (Hitchcock et al. 1998), there are a
number of unresolved problems that limit its usefulness.
The issue of linking a reference to an instance of the doc-
ument it refers to can be viewed as a two step process
(Caplan & Arms 1999): (1) resolution of a reference string
into a document identifier; and (2) resolution of the doc-
ument identifier into one or more URLs. In the current
use of the ADS reference resolver, (Accomazzi et al. 1999)
step (1) is accomplished by the publisher during the last
stages of the electronic publication process, and links are
created only if a reference string is found to correspond
to a valid bibcode in ADS (“static linking”). The step of
document resolution (2) is another example of the prob-
lem of object resolution mentioned in Sect. 6.2. In this
case, a bibcode needs to be mapped into the “best” URL
corresponding to it, and is typically implemented as a site-
specific resolution activity, so that for example, the CDS
mirror of the University of Chicago journals will link to
the CDS mirror of the ADS bibliographic services.

While this model has worked well for many astro-
nomical journals, it has some shortcomings. First of
all, the computation of static links at publication time
does not allow for the possibility that one of the works
cited in the reference section may become available

at a later date (e.g. if the coverage of the literature
has been extended or if a more accurate resolution of
the reference is later implemented). From a theoretical
point of view, a better approach to the problem would
be the use of “dynamic linking,” in which links are
created when the document is downloaded by the reader
(Van de Sompel & Hochstenbach 1999). It is likely that
most publishers will move towards a mixed model in
which on-line documents are periodically reprocessed
for the purpose of updating links between them and
external resources that may have become available, or to
provide options for forward-looking citation queries into
bibliographical databases.

As far as the issue of bibcode resolution, it is clear that
a better approach to having site-specific settings would be
to allow real-time resolution of bibcode identifiers based
on the preference of the individual users and the current
availability of relevant resources. The approach we follow
when resolving links to external resources (SEARCH) does
account for user preferences, but does not take into ac-
count real-time availability of the possible instances of the
resource. This is in contrast with the approach followed by
Fernique et al. (1998), where the opposite is true. It is clear
that in order to create a reliable system for resolving as-
tronomical resources, and integration of both approaches
is necessary, so that a global user profile can be used to
specify preferences while a global resource database can
be used to specify the availability and location of these
resources on the network. The implementation of such a
system is greatly complicated by the increasingly complex
organization of networks, with firewalls and proxy servers
acting as intermediary agents in the activity of resource
resolution. Hopefully these issues will be solved over the
next few years by the adoption of standard practices and
software tools.

7. Conclusions

The design and implementation of the ADS bibliographic
services has been driven by the desire to provide flexible
search capabilities to the astronomical community. The
original decision to create our own suite of software tools
for indexing and searching the databases has proven to
be an important one as it has given us the freedom to
continuously enhance and tailor the software to our users’
needs. With freedom, however, also came the responsibil-
ity of maintaining a complex system which has now been
ported to a variety of hardware and software platforms.
Fortunately, the adoption of standard programming lan-
guages and coding techniques has greatly facilitated the
task.

Over the years, the ADS has evolved from being a
user-oriented system to becoming an open service for the
discovery and retrieval of bibliographic data, allowing in-
tegration of our capabilities in the operation of other in-
formation providers. At the same time, our system was

108 A. Accomazzi et al.: The NASA ADS: Architecture

expanded from being simply a searchable archive of bib-
liographic references to being a service offering relational
links among records within our system and to resources
available elsewhere. In this respect, the design of a hier-
archical framework for the management of bibliographic
resources has provided the required level of flexibility and
extensibility. With the recent proliferation of mirror sites
for popular resources in astronomy, we have adopted a
simple yet powerful mechanism for the resolution of links
to resources available at multiple locations, adding user
customization to the resolution process.

With the completion of full-text coverage of the astro-
nomical literature over the next few years, the ADS will
be able to significantly increase the holdings of its citation
database and provide full-text search and retrieval capa-
bilities. With the adoption of new technologies and stan-
dards in electronic data interchange, the ADS is likely
continue to play an important role in the integration of
network services in astronomy.

Acknowledgements. The usefulness of a bibliographic service
is only as good as the quality and quantity of the data it con-
tains. The ADS project has been lucky in benefitting from the
skills and dedication of several people who have significantly
contributed to the creation and management of the underlying
datasets. In particular, we would like to acknowledge the work
of Elizabeth Bohlen, Donna Thompson, Markus Demleitner,
and Joyce Watson.

Funding for this project has been provided by NASA under
grant NCC5-189.

References

Accomazzi A., Grant C.S., Eichhorn G., Kurtz M.J., Murray
S.S., 1995, “ADS Abstract Service Enhancements”, in ASP
Conf. Ser. 77, Astronomical Data Analysis Software and
Systems IV, Shaw R.A., Payne H.E., Hayes J.J.E. (eds.).
San Francisco: ASP, p. 36

Accomazzi A., Eichhorn G., Kurtz M.J., Grant C.S., Murray
S.S., 1999, “The ADS Bibliographic Reference Resolver”, in
ASP Conf. Ser. 172, Astronomical Data Analysis Software
and Systems VIII, Mehringer D.M., Plante R.L., Roberts
D.A. (eds.). San Francisco: ASP, p. 291

Bell D.J., Biemesderfer C.D., Barnes J., Massey P., 1996,
“An Automated System for Receiving KPNO Proposals
by Electronic Mail”, in ASP Conf. Ser. 101, Astronomical
Data Analysis Software and Systems V, Jacoby G.H. &
Barnes J. (eds.). San Francisco: ASP, p. 451

Bell D., 1999, “Webmail: An Automated Web Publishing
System”, in ASP Conf. Ser. 172, Astronomical Data
Analysis Software and Systems VIII, Mehringer D.M.,
Plante R.L., Roberts D.A. (eds.). San Francisco: ASP,
p. 257

Belkin N.J., Croft W.B., 1992, “Information filtering and
information retrieval: two sides of the same coin”,
Communications of the ACM 35, 29

Birman K.P., 1999, “A review of experiences with reliable mul-
ticast”, Software: Practice & Experience 29, 741

Caplan P., Arms W.Y., 1999, “Reference Linking for Journal
Articles”, D-Lib magazine 5,
<URL:http://www.dlib.org/dlib/july99/caplan/-
07caplan.html>

Dempsey B.J., Weiss D., 1999, “Towards An Efficient, Scalable
Replication Mechanism for the I2-DSI Project”, Tech. Rep.
TR-1999-01, School of Information and Library Science,
University of North Carolina. Chapel Hill, NC

Deutsch L.P., Gailly J., 1996, “ZLIB Compressed Data Format
Specification, version 3.3”, RFC 1950, Internet Engineering
Task Force

Efthimiadis E.N., 1996, “Query expansion”, Ann. Rev. Inf. Sci.
Tech. 31, 121

Egret D., Wenger M., 1988, “SIMBAD – present status
and future”, in ESO Conf. #28, Astronomy from Large
Databases: Scientific Objectives and Methodological
Approaches, Heck A. & Murtagh F. (eds.), p. 323

Eichhorn G., Kurtz M.J., Accomazzi A., Grant C.S., Murray
S.S., 2000, “The NASA Astrophysics Data System: The
Search Engine and its User Interface”, A&AS 143, 61
(SEARCH)

Frakes W., Baeza–Yates R., 1992, “Information Retrieval: Data
Structures & Algorithms”. Prentice-Hall, Upper Saddle
River, NJ

Fernique P., Ochsenbein F., Wenger M., 1998, “CDS GLU,
a Tool for Managing Heterogeneous Distributed Web
Services”, in ASP Conf. Ser. 145, Astronomical Data
Analysis Software and Systems VII, Albrecht R., Hook
R.N., Bushouse H.A. (eds.). San Francisco: ASP, p. 466

Gadd T.N., 1988, “Fishing fore Werds: Phonetic Retrieval of
written text in Information Retrieval Systems”, Program-
Automated Library and Information Systems 22, 222

Gadd T.N., 1990, “Phonix: the Algorithm”, Program-
Automated Library and Information Systems 24, 363

Grant C.S., Accomazzi A., Eichhorn G., Kurtz M.J., Murray
S.S., 2000, “The NASA Astrophysics Data System: Data
Holdings”, A&AS 143, 111 (DATA)

Grefenstette G., 1998, “Problems and approaches to Cross
Language Information Retrieval”, Proceedings of the ASIS
Annual Meeting 35, 143

Hanisch R., 2000, “Distributed Data Systems and Services in
Astronomy and the Space Sciences”, Astronomical Data
Analysis Software and Systems IX Proceedings (in press)

Harman D., 1991, J. Am. Soc. Inf. Sci. 42, 7
Hayes-Roth F., Waterman D.A., Lenat D.B., 1983, “Building

Expert Systems”. Addison-Wesley, Reading, MA
Heap J., 1978, “Information Retrieval – Computational and

Theoretical Aspects”. Academic Press, New York
Helou G., Madore B., 1988, “A new extragalactic database”,

in ESO Conf. #28, Astronomy from Large Databases:
Scientific Objectives and Methodological Approaches, Heck
A. & Murtagh F., p. 335

Heikkila C.W., McGlynn T.A., White N.E., 1999,
“Astrobrowse: a Web Agent for Querying Astronomical
Databases”, in ASP Conf. Ser. 172, Astronomical Data
Analysis Software and Systems VIII, Mehringer D.M.,
Plante R.L., Roberts D.A. (eds.). San Francisco: ASP,
p. 221

Hitchcock S., Carr L., Hall W., Harris S., Probets S., Evans
D., Brailsford D., 1998 “Linking Electronic Journals:
Lessons from the Open Journal Project”, D-Lib Magazine,

A. Accomazzi et al.: The NASA ADS: Architecture 109

December 1998,
<URL:http://www.dlib.org/dlib/december98/-
12hitchcock.html>

IEEE Computer Society, 1995, “1003-1995 IEEE guide to
the POSIX Open System Environment”, The Institute of
Electrical and Electronics Engineers, Inc.

Kitajima J.P., Resende M.D., Ribeiro-Neto B., Ziviani N.,
1997, “Distributed parallel generation of indices for very
large text databases”, Proc. III Int. Conf. on Algorithms
and Architectures for Parallel Processing, Goscinski A.,
Hobbs M., Zhou W. (eds.), p. 745

Knuth D., 1973, “The Art of Computer Programming, Vol. 3:
Sorting and Searching”. Addison-Wesley, New York

Kurtz M.J., Eichhorn G., Accomazzi A., Grant C.S., Murray
S.S., Watson J.M., 2000, “The NASA Astrophysics Data
System: Overview”, A&AS 143, 41 (OVERVIEW)

Kurtz M.J., Karakashian T., Grant C.S., Eichhorn G., Murray
S.S., Watson J.M., Ossorio P.G., Stoner J.L., 1993,
“Intelligent Text Retrieval in the NASA Astrophysics
Data System”, in ASP Conf. Ser. 52, Astronomical Data
Analysis Software & Systems II, Hanisch R.J., Brissenden
R.J.V., Barnes J. (eds.). San Francisco: ASP, p. 132

Lee J., Dubin D.S., Kurtz M.J., 1999, “Co-occurrence
Evidence for Subject Vocabulary Reconciliation in ADS
Databases”, in ASP Conf. Ser. 172, Astronomical Data
Analysis Software and Systems VIII, Mehringer D.M.,
Plante R.L., Roberts D.A. (eds.). San Francisco: ASP,
p. 287

Loukides M., Oram A., 1996, “Programming With Gnu
Software. Nutshell Handbook”, O’Reilly & Associates, Inc.

Lynch C., Molina-Gracia H., 1996, “Interoperability, Scaling,
and the Digital Libraries Research Agenda”,
<URL:http://www-diglib.stanford.edu/diglib/pub/-
reports/iita-dlw/>

Miles P., 1998, “Internet World Guide to Webcasting”. Wiley
& Sons

Miller K., Robertson K., Tweedly A., White M., 1998,
“StarBurst Multicast File Transfer Protocol (MFTP)
Specification”, Internet Draft, Internet Engineering Task
Force

Miller U., 1997, Inf. Proc. Manag. 33, 481
Murtagh F., Guillaume D., 1998, “Distributed Information

Search and Retrieval for Astronomical Resource Discovery
and Data Mining”, in ASP Conf. Ser. 153, Library and
Information Services in Astronomy III, Grothkopf U.,
Andernach H., Stevens-Rayburn S., Gomez M. (eds.). San
Francisco: ASP, p. 51

Navarro G., 1998, “Approximate Text Searching”, Ph.D.

Thesis. University of Chile, Santiago, Chile
Oard D.W., Diekema A.R., 1997, Ann. Rev. Inf. Sci. Technol.

33, 223
Paskin N., 1999, “DOI: Current Status and Outlook – May

1999”, D-Lib Magazine 5,
<URL:http://www.dlib.org/dlib/may99/05paskin.html>

Salton G., 1989, “Automatic text processing: the transforma-
tion, analysis and retrieval of information by computer”.
Addison-Wesley, Reading, MA

Salton G., Buckley C., 1988, Inf. Proc. Manag. 24, 513
Salton G., McGill M.J., 1983, “Introduction to Modern

Information Retrieval”. McGraw-Hill, New York
Schatz B.R., 1997, “Information Retrieval in Digital Libraries:

Bringing Search to the Net”, Sci 275, 327
Schmitz M., Helou G., Dubois P., Lague C., Madore

B., Corwin H.G.J., Lesteven S., 1995, “A Uniform
Bibliographic Code”, Vistas Astron. 39, 272

Shaya E., Blackwell J., Gass J., Oliversen N., Schneider G.,
Thomas B., Cheung C., White R.A., 1999, Am. Astron.
Soc. Meet. 194, 8304

Shobbrook R.M., Shobbrook R.R., 1992, Proc. Ast. Soc. Aust.
10, 134

Shobbrook R.M., 1995, Vistas Astron. 39, 272
Tridgell A., 1999a, “Efficient Algorithms for Sorting and

Synchronization,” Ph.D. Thesis, The Australian National
University

Tridgell A., 1999b (private communication)
Unicode Consortium 1996, “The Unicode Standard: Version

2.0”. Addison-Wesley, Reading, MA
Van de Sompel H., Hochstenbach P., 1999, “Reference Linking

in a Hybrid Libary Environment,” D-Lib Magazine 5,
<URL:http://www.dlib.org/dlib/april99/van de sompel/-
04van de sompel-pt1.html>

van Rijsbergen C.J., 1979, “Information Retrieval”,
Butterworths, 2nd ed.

Wall L., Christiansen T., Schwartz R., 1996, “Programming
PERL”, O’Reilly & Associates, Inc., 2nd ed.

Wilkins G.A., 1998, “The Revision of UDC 52 and of the
Astronomy Thesaurus”, in ASP Conf. Ser. 153, Library
and Information Services in Astronomy III, Grothkopf U.,
Andernach H., Stevens-Rayburn S., Gomez M. (eds.). San
Francisco: ASP, p. 317

Xu J.X., Croft W.B., 1998, ACM Trans. Information Systems
16, 61

Ylonen T., Kivinen M., Rinne T., Lehtinen S., 1999,
“SSH Protocol Architecture”, Internet Draft, Internet
Engineering Task Force

